1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Single cell rheometry with a microfluidic constriction: Quantitative control of friction and fluid leaks between cell and channel walls
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/2/10.1063/1.4802272
1.
1. M. R. Looney, E. E. Thornton, D. Sen, W. J. Lamm, R. W. Glenny, and M. Krummel, Nat. Methods 8, 9196 (2011).
http://dx.doi.org/10.1038/nmeth.1543
2.
2. Y. Zheng and Y. Sun, Micro Nano Lett. 6, 327331 (2011).
http://dx.doi.org/10.1049/mnl.2011.0010
3.
3. H. W. Hou, W. C. Lee, M. C. Leong, S. Sonam, S. R. K. Vedula, and C. T. Lim, Cell. Mol. Bioeng. 4, 591602 (2011).
http://dx.doi.org/10.1007/s12195-011-0209-4
4.
4. M. Nishino, H. Tanaka, H. Ogura, Y. Inoue, T. Koh, K. Fujita, and H. Sugimoto, J. Trauma 59, 14251431 (2005).
http://dx.doi.org/10.1097/01.ta.0000197356.83144.72
5.
5. S. Gabriele, A. M. Benoliel, P. Bongrand, and O. Theodoly, Biophys. J. 96, 43084318 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.02.037
6.
6. P. Preira, T. Leoni, M.-P. Valignat, A. Lellouch, P. Robert, J.-M. Forel, L. Papazian, G. Dumenil, P. Bongrand, and O. Théodoly, Int. J. Nanotechnol. 9, 529547 (2012).
http://dx.doi.org/10.1504/IJNT.2012.045340
7.
7. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Lab Chip 8, 10621070 (2008).
http://dx.doi.org/10.1039/b802931h
8.
8. K. C. Chaw, M. Manimaran, E. H. Francis, and S. Swaminathan, Microvasc. Res. 72, 153160 (2006).
http://dx.doi.org/10.1016/j.mvr.2006.06.003
9.
9. B. Yap and R. D. Kamm, J. Appl. Physiol. 98, 19301939 (2005).
http://dx.doi.org/10.1152/japplphysiol.01226.2004
10.
10. J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, Proc. Natl. Acad. Sci. U.S.A 100, 1461814622 (2003).
http://dx.doi.org/10.1073/pnas.2433968100
11.
11. R. J. Hawkins, M. Piel, G. Faure-Andre, A. M. Lennon-Dumenil, J. F. Joanny, J. Prost, and R. Voituriez, Phys. Rev. Lett. 102, 058103 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.058103
12.
12. J. Jacobelli, R. S. Friedman, M. A. Conti, A. M. Lennon-Dumenil, M. Piel, C. M. Sorensen, R. S. Adelstein, and M. F. Krummel, Nat. Immun. 11, 953961 (2010).
http://dx.doi.org/10.1038/ni.1936
13.
13. K. C. Chaw, M. Manimaran, F. E. H. Tay, and S. Swaminathan, J. Phys.: Conf. Ser. 34, 747751 (2006).
http://dx.doi.org/10.1088/1742-6596/34/1/123
14.
14. A. D. Van der Meer, A. A. Poot, M. H. G. Duits, J. Feijen, and I. Vermes, J. Biomed. Biotechnol. 2009, 110.
15.
15. E. W. K. Young and C. A. Simmons, Lab Chip 10, 143160 (2010).
http://dx.doi.org/10.1039/b913390a
16.
16. J. W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama, Anal. Chem. 77, 39933999 (2005).
http://dx.doi.org/10.1021/ac050131o
17.
17. E. Tkachenko, E. Gutierrez, M. H. Ginsberg, and A. Groisman, Lab Chip 9, 10851095 (2009).
http://dx.doi.org/10.1039/b812184b
18.
18. O. F. Khan and M. V. Sefton, Biomed. Microdevices 13, 6987 (2011).
http://dx.doi.org/10.1007/s10544-010-9472-8
19.
19. A. D. Van der Meer, A. A. Poot, J. Feijen, and I. Vermes, Biomicrofluidics 4, 110 (2010).
20.
20. J. W. Song, S. P. Cavnar, A. C. Walker, K. E. Luker, M. Gupta, Y. C. Tung, G. D. Luker, and S. Takayama, PLoS ONE 4(6), e5756 (2009).
http://dx.doi.org/10.1371/journal.pone.0005756
21.
21. J. B. Shao, L. Wu, J. Z. Wu, Y. H. Zheng, H. Zhao, Q. H. Jin, and J. L. Zhao, Lab Chip 9, 31183125 (2009).
http://dx.doi.org/10.1039/b909312e
22.
22. S. M. McFaul, B. K. Lin, and H. Ma, Lab Chip 12, 23692376 (2012).
http://dx.doi.org/10.1039/c2lc21045b
23.
23. S. A. Vanapalli, M. H. G. Duits, and F. Mugele, Biomicrofluidics 3, 012006 (2009).
http://dx.doi.org/10.1063/1.3067820
24.
24. P. Preira, V. Grandné, J.-M. Forel, S. Gabriele, M. Camara, and O. Theodoly, Lab Chip 13, 161170 (2013).
http://dx.doi.org/10.1039/c2lc40847c
25.
25. D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Yuan Hsin, and D. E. Ingber, Science 328, 16621668 (2010).
http://dx.doi.org/10.1126/science.1188302
26.
26. A. Gunther, S. Yasotharan, A. Vagaon, C. Lochovsky, S. Pinto, J. Yang, C. Lau, J. Voigtlaender-Bolz, and S.-S. Bolz, Lab Chip 10, 23412349 (2010).
http://dx.doi.org/10.1039/c004675b
27.
27. M. Abkarian, M. Faivre, and H. A. Stone, Proc. Natl. Acad. Sci. U.S.A. 103, 538542 (2006).
http://dx.doi.org/10.1073/pnas.0507171102
28.
28. K. Tsukada, E. Sekisuka, C. Oshio, and H. Minamitani, Microvasc. Res. 61, 231239 (2001).
http://dx.doi.org/10.1006/mvre.2001.2307
29.
29. R. P. Rand and A. C. Burton, Biophys. J. 4, 115135 (1964).
http://dx.doi.org/10.1016/S0006-3495(64)86773-4
30.
30. E. A. Evans, Biophys. J. 13, 941954 (1973).
http://dx.doi.org/10.1016/S0006-3495(73)86036-9
31.
31. S. Chien, Blood Cells 3, 7199 (1977).
32.
32. M. A. Lichtman, J. Clin. Invest. 52, 350358 (1973).
http://dx.doi.org/10.1172/JCI107191
33.
33. M. E. Miller and K. A. Myers, J. Reticuloendothel. Soc. 18, 337345 (1975).
34.
34. G. W. Schmid-Schonbein, Y. Y. Shih, and S. Chien, Blood 56, 866875 (1980).
35.
35. G. W. Schmid-Schonbein, K.-L. Paul Sung, H. Tozere, R. Skalak, and S. Chien, Biophys. J. 36, 243256 (1981).
http://dx.doi.org/10.1016/S0006-3495(81)84726-1
36.
36. E. Evans and B. Kukan, Blood 64, 10281035 (1984); available at http://bloodjournal.hematologylibrary.org/content/64/5/1028.abstract%7d.
37.
37. D. Needham and R. M. Hochmuth, J. Biomech. Eng. 112, 269276 (1990).
http://dx.doi.org/10.1115/1.2891184
38.
38. F. Richelme, A. M. Benoliel, and P. Bongrand, Cell Motil. Cytoskeleton 45(2), 93105 (2000).
http://dx.doi.org/10.1002/(SICI)1097-0169(200002)45:2<93::AID-CM2>3.0.CO;2-Z
39.
39. M. Balland, N. Desprat, D. Icard, S. Fereol, A. Asnacios, J. Browaeys, S. Henon, and F. Gallet, Phys. Rev. E 74, 021911 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021911
40.
40. T. Herricks, M. Antia, and P. K. Rathod, Cell. Microbiol. 11, 13401353 (2009).
http://dx.doi.org/10.1111/j.1462-5822.2009.01334.x
41.
41. S. C. Gifford, J. Derganc, S. S. Shevkoplyas, T. Yoshida, and M. W. Bitensky, Br. J. Haematol. 135, 395404 (2006).
http://dx.doi.org/10.1111/j.1365-2141.2006.06279.x
42.
42. Z. S. Khan and S. A. Vanapalli, Biomicrofluidics 7, 011806 (2013).
http://dx.doi.org/10.1063/1.4774310
43.
43. E. Kang, S.-J. Shin, K. H. Lee, and S.-H. Lee, Lab Chip 10, 18561861 (2010).
http://dx.doi.org/10.1039/c002695f
44.
44. L. K. Fiddes, N. Raz, S. Srigunapalan, E. Tumarkan, C. A. Simmons, A. R. Wheeler, and E. Kumacheva, Biomaterials 31, 34593464 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.01.082
45.
45. C. Zhou, P. Yue, and J. Feng, Ann. Biomed. Eng. 35, 776780 (2007).
http://dx.doi.org/10.1007/s10439-007-9286-x
46.
46. F. Y. Leong, Q. Li, C. T. Lim, and K. H. Chiam, Biomech. Model. Mechanobiol. 10, 755766 (2011).
http://dx.doi.org/10.1007/s10237-010-0271-1
47.
47. Q. Guo, S. Park, and H. S. Ma, Lab Chip 12, 26872695 (2012).
http://dx.doi.org/10.1039/c2lc40205j
48.
48. N. Walter, A. Micoulet, T. Seufferlein, and J. P. Spatz, BioInterphases 6, 117125 (2011).
http://dx.doi.org/10.1116/1.3625258
49.
49. Y. Xia and G. M. Whitesides, Angew. Chem. 37, 550575 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
50.
50. S. Tsuchiya, M. Yamabe, Y. Yamaguchi, Y. Kobayashi, T. Konno, and K. Tada. Int. J. Cancer 26, 171176 (1980).
http://dx.doi.org/10.1002/ijc.2910260208
51.
51. J. Vitte, A.-M. Benoliel, P. Eymeric, P. Bongrand, and A. Pierres, Biophys. J. 86, 40594074 (2004).
http://dx.doi.org/10.1529/biophysj.103.038778
52.
52. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “ Computer control of microscopes using μmanager,” Curr. Protoc. Mol. Biol. 92, 14201142017 (2010).
http://dx.doi.org/10.1002/0471142727.mb1420s92
53.
53. O. Theodoly, Z.-H. Huang, and M.-P. Valignat, Langmuir 26, 19401948 (2010).
http://dx.doi.org/10.1021/la902504y
54.
54. S. Gabriele, M. Versaevel, P. Preira, and O. Theodoly, Lab Chip 10, 14591467 (2010).
http://dx.doi.org/10.1039/c002257h
55.
55. M. Bathe, A. Shirai, C. M. Doerschuk, and R. D. Kamm, Biophys. J. 83, 19171933 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)73955-6
56.
56. P. Preira, J.-M. Forel, P. Robert, F. Xeridat, O. Brissy, P. Bongrand, L. Papazian, and O. Theodoly, “Leukocyte stiffening property of plasma in early ARDS revealed by a microfluidic single-cell study- role of cytokines and protection with antibodies” (unpublished).
57.
57. V. Vitkova, M. Mader, and T. Podgorski, Europhys. Lett. 68, 398404 (2004).
http://dx.doi.org/10.1209/epl/i2004-10211-9
58.
58. C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 20322045 (2010).
http://dx.doi.org/10.1039/c001191f
59.
59. J. Bico and D. Quéré, J. Colloid Interface Sci. 247, 162166 (2002).
http://dx.doi.org/10.1006/jcis.2001.8106
60.
60. W. B. Kolb and R. Cerro, J. Colloid Interface Sci. 159, 302311 (1993).
http://dx.doi.org/10.1006/jcis.1993.1327
61.
61. T. C. Thulasidas, M. A. Abraham, and R. L. Cerro, “ Bubble-train flow in capillaries of circular and square cross section,” Chem. Eng. Sci. 50, 183199 (1995).
http://dx.doi.org/10.1016/0009-2509(94)00225-G
62.
62. T. C. Ransohoff and C. J. Radke, J. Colloid Interface Sci. 121, 392401 (1988).
http://dx.doi.org/10.1016/0021-9797(88)90442-0
63.
63. H. Wong, C. J. Radke, and S. Morris, J. Fluid Mech. 292, 7194 (1995).
http://dx.doi.org/10.1017/S0022112095001443
64.
64. H. Wong, C. J. Radke, and S. Morris, J. Fluid Mech. 292, 95110 (1995).
http://dx.doi.org/10.1017/S0022112095001455
65.
65. S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, Lab Chip 9, 982990 (2009).
http://dx.doi.org/10.1039/b815002h
66.
66. M. Dong and I. Chatziz, J. Colloid Interface Sci. 172, 278288 (1995).
http://dx.doi.org/10.1006/jcis.1995.1253
67.
67. R. M. Hochmuth, J. Biomech. 33, 1522 (2000).
http://dx.doi.org/10.1016/S0021-9290(99)00175-X
68.
68. J. Bico and D. Quéré, J. Fluid Mech. 467, 101127 (2002).
http://dx.doi.org/10.1017/S002211200200126X
69.
69. F. P. Bretherton, J. Fluid Mech. 10, 166188 (1961).
http://dx.doi.org/10.1017/S0022112061000160
70.
70. E. R. Damiano, Microvasc. Res. 55, 7791 (1998).
http://dx.doi.org/10.1006/mvre.1997.2052
71.
71. A. Yeung and E. Evans, Biophys. J. 56, 139149 (1989).
http://dx.doi.org/10.1016/S0006-3495(89)82659-1
72.
72. F. Richelme, A. M. Benoliel, and P. Bongrand, Exp. Biol. Online 2(5), 1 (1997).
73.
73. X. Trepat, D. Linhong, A. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, Nature 447, 592595 (2007).
http://dx.doi.org/10.1038/nature05824
74.
74. B. Fabry, G. N. Maksym, J P. . Butler, M. Glogauer, D. Navajas, and J. Fredberg, Phys. Rev. Lett. 87, 148102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.148102
75.
75. A. Ducret, M. P. Valignat, F. Mouhamar, T. Mignot, and O. Theodoly, Proc. Natl. Acad. Sci. U.S.A. 109(25), 1003610041 (2012).
http://dx.doi.org/10.1073/pnas.1120979109
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4802272
Loading
/content/aip/journal/bmf/7/2/10.1063/1.4802272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/2/10.1063/1.4802272
2013-04-23
2015-04-02

Abstract

We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/2/1.4802272.html;jsessionid=156ym3l9xcvdu.x-aip-live-03?itemId=/content/aip/journal/bmf/7/2/10.1063/1.4802272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single cell rheometry with a microfluidic constriction: Quantitative control of friction and fluid leaks between cell and channel walls
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4802272
10.1063/1.4802272
SEARCH_EXPAND_ITEM