1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/3/10.1063/1.4808456
1.
1. P. Paterlini-Brechot and N. L. Benali, Cancer Lett. 253, 180204 (2007).
http://dx.doi.org/10.1016/j.canlet.2006.12.014
2.
2. E. C. Kohn and L. A. Liotta, Cancer Res. 55, 18561862 (1995).
3.
3. C. Wittekind and M. Neid, Oncology 69, 1416 (2005).
http://dx.doi.org/10.1159/000086626
4.
4. J. S. Michealson et al., Br. J. Cancer 93, 12441249 (2005).
http://dx.doi.org/10.1038/sj.bjc.6602848
5.
5. T. S. Deisboeck et al., Med. Hypotheses 65, 785790 (2005).
http://dx.doi.org/10.1016/j.mehy.2005.04.014
6.
6. S. L. Stott et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1839218397 (2010).
http://dx.doi.org/10.1073/pnas.1012539107
7.
7. M. Cristofanilli et al., N. Engl. J. Med. 351, 781791 (2004).
http://dx.doi.org/10.1056/NEJMoa040766
8.
8. J. C. Goeminne et al., Ann. Oncol. 11, 785792 (2000).
http://dx.doi.org/10.1023/A:1008398228018
9.
9. W. J. Allard et al., Clin. Cancer Res. 10, 68976904 (2004).
http://dx.doi.org/10.1158/1078-0432.CCR-04-0378
10.
10. S. Bustin and R. Mueller, Clin. Sci. 109, 365379 (2005).
http://dx.doi.org/10.1042/CS20050086
11.
11. V. Zieglschmid et al., Crit. Rev. Clin. Lab. Sci. 42, 155196 (2005).
http://dx.doi.org/10.1080/10408360590913696
12.
12. F. Schüler and G. Dölken, Clin. Chim. Acta 363, 147156 (2006).
http://dx.doi.org/10.1016/j.cccn.2005.05.045
13.
13. S. Nagrath et al., Nature 450, 12351239 (2007).
http://dx.doi.org/10.1038/nature06385
14.
14. A. Bonnomet et al., Oncogene 31, 37413753 (2012).
http://dx.doi.org/10.1038/onc.2011.540
15.
15. S. J. Tan et al., Biomed. Microdevices 11, 883892 (2009).
http://dx.doi.org/10.1007/s10544-009-9305-9
16.
16. M. Hosokawa et al., Anal. Chem. 82, 66296635 (2010).
http://dx.doi.org/10.1021/ac101222x
17.
17. Z. Chen et al., Surf. Interface Anal. 38, 9961003 (2006).
http://dx.doi.org/10.1002/sia.2344
18.
18. S. Zheng et al., Biomed. Microdevices 13, 203213 (2011).
http://dx.doi.org/10.1007/s10544-010-9485-3
19.
19. Z. Liu et al., Biomicrofluidics 7, 011801 (2013).
http://dx.doi.org/10.1063/1.4774308
20.
20. S. C. Hur et al., Biomicrofluidics 5, 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
21.
21. A. A. S. Bhagat et al., Lab Chip 11, 18701878 (2011).
http://dx.doi.org/10.1039/c0lc00633e
22.
22. H. S. Moon et al., Biomicrofluidics 7, 014105 (2013).
http://dx.doi.org/10.1063/1.4788914
23.
23. J. Sun et al., Biomicrofluidics 7, 011802 (2013).
http://dx.doi.org/10.1063/1.4774311
24.
24. M. Alshareef et al., Biomicrofluidics 7, 011803 (2013).
http://dx.doi.org/10.1063/1.4774312
25.
25. F. Yang et al., Biomicrofluidics 4, 013204 (2010).
http://dx.doi.org/10.1063/1.3279786
26.
26. P. R. C. Gascoyne et al., Electrophoresis 30, 13881398 (2009).
http://dx.doi.org/10.1002/elps.200800373
27.
27. V. Gupta et al., Biomicrofluidics 6, 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
28.
28. S. Shim et al., Biomicrofluidics 7, 011807 (2013).
http://dx.doi.org/10.1063/1.4774304
29.
29. H. W. Hou et al., Sci. Rep. 3, 1259 (2013).
30.
30. L. Weiss, Adv. Cancer Res. 54, 159210 (1990).
http://dx.doi.org/10.1016/S0065-230X(08)60811-8
31.
31. J. P. Shelby et al., Proc. Natl. Acad. Sci. U.S.A. 100, 1461814622 (2003).
http://dx.doi.org/10.1073/pnas.2433968100
32.
32. H. Mohamed et al., IEEE Trans. Nanobiosci. 3, 251256 (2004).
http://dx.doi.org/10.1109/TNB.2004.837903
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/3/10.1063/1.4808456
Loading
/content/aip/journal/bmf/7/3/10.1063/1.4808456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/3/10.1063/1.4808456
2013-06-06
2014-10-31

Abstract

For cancer patients, the enumeration of rare circulating tumor cells (CTCs) in peripheral blood is a strong prognostic indicator of the severity of the cancer; for the general population, the capture of CTCs is needed for use as a clinical tool for cancer screening, early detection, and treatment assessment. Here, we present a fast, high-purity (∼90%) and high-efficiency (>90%) method for the segregation and undamaged recovery of CTCs using a spatially gradated microfluidic chip. Further, by lysing the red blood cells we achieved not only a significant reduction in the overall processing time but also mitigated the blood clogging problem commonly encountered in microfluidic-based CTC isolation systems. To clinically validate the chip, we employed it to detect and capture CTCs from 10 liver cancer patients. Positive CTC enumeration was observed in all the blood samples, and the readings ranged from a low of 1–2 CTCs (1 patient) to a high of >20 CTCs (2 patients) with the balance having 3–20 CTCs per 3-ml blood sample. The work here indicates that our system can be developed for use in cancer screening, metastatic assessment, and chemotherapeutic response and for pharmacological and genetic evaluation of single CTCs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/3/1.4808456.html;jsessionid=c64wn8rtp6p3.x-aip-live-03?itemId=/content/aip/journal/bmf/7/3/10.1063/1.4808456&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/3/10.1063/1.4808456
10.1063/1.4808456
SEARCH_EXPAND_ITEM