1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/3/10.1063/1.4812688
1.
1. B. Roda, G. Lanzoni, F. Alviano et al., Stem Cell Rev. Rep. 5(4), 420 (2009).
http://dx.doi.org/10.1007/s12015-009-9088-7
2.
2. M. Cristofanilli, G. T. Budd, M. J. Ellis et al., N. Engl. J. Med. 351(8), 781 (2004).
http://dx.doi.org/10.1056/NEJMoa040766
3.
3. K. Pantel, R. H. Brakenhoff, and B. Brandt, Nat. Rev. Cancer 8(5), 329 (2008).
http://dx.doi.org/10.1038/nrc2375
4.
4. M. Mego, S. A. Mani, C. Li et al., Cancer Res. 69(24), 3011 (2009).
http://dx.doi.org/10.1158/0008-5472.SABCS-09-3011
5.
5. A. A. S. Bhagat, H. W. Hou, L. D. Li et al., Lab Chip 11(11), 1870 (2011).
http://dx.doi.org/10.1039/c0lc00633e
6.
6. L. R. Huang, E. C. Cox, R. H. Austin et al., Science 304(5673), 987 (2004).
http://dx.doi.org/10.1126/science.1094567
7.
7. S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe et al., Lab Chip 11(5), 912 (2011).
http://dx.doi.org/10.1039/c0lc00595a
8.
8. S. C. Hur, A. J. Mach, and D. Di Carlo, Biomicrofluidics 5(2), 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
9.
9. K. A. Hyun, K. Kwon, H. Han et al., Biosens. Bioelectron. 40(1), 206 (2013).
http://dx.doi.org/10.1016/j.bios.2012.07.021
10.
10. H. S. Moon, K. Kwon, S. I. Kim et al., Lab Chip 11(6), 1118 (2011).
http://dx.doi.org/10.1039/c0lc00345j
11.
11. J. S. Park and H. I. Jung, Anal. Chem. 81(20), 8280 (2009).
http://dx.doi.org/10.1021/ac9005765
12.
12. T. S. Sim, K. Kwon, J. C. Park et al., Lab Chip 11(1), 93 (2011).
http://dx.doi.org/10.1039/c0lc00109k
13.
13. J. Sun, M. Li, C. Liu et al., Lab Chip 12(20), 3952 (2012).
http://dx.doi.org/10.1039/c2lc40679a
14.
14. H. S. Moon, K. Kwon, K. A. Hyun et al., Biomicrofluidics 7(1), 014105 (2013).
http://dx.doi.org/10.1063/1.4788914
15.
15. Z. B. Liu, F. Huang, J. H. Du et al., Biomicrofluidics 7(1), 011801 (2013).
http://dx.doi.org/10.1063/1.4774308
16.
16. A. Karimi, S. Yazdi, and A. M. Ardekani, Biomicrofluidics 7(2), 021501 (2013).
http://dx.doi.org/10.1063/1.4799787
17.
17. M. Alshareef, N. Metrakos, E. J. Perez et al., Biomicrofluidics 7(1), 011803 (2013).
http://dx.doi.org/10.1063/1.4774312
18.
18. S. Shim, K. Stemke-Hale, A. M. Tsimberidou et al., Biomicrofluidics 7(1), 011807 (2013).
http://dx.doi.org/10.1063/1.4774304
19.
19. P. R. C. Gascoyne, J. Noshari, T. J. Anderson et al., Electrophoresis 30(8), 1388 (2009).
http://dx.doi.org/10.1002/elps.200800373
20.
20. V. Gupta, I. Jafferji, M. Garza et al., Biomicrofluidics 6(2), 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
21.
21. I. Desitter, B. S. Guerrouahen, N. Benali-Furet et al., Anticancer Res. 31(2), 427 (2011).
22.
22. M. Hosokawa, T. Hayata, Y. Fukuda et al., Anal. Chem. 82(15), 6629 (2010).
http://dx.doi.org/10.1021/ac101222x
23.
23. H. M. Ji, V. Samper, Y. Chen et al., Biomed. Microdevices 10(2), 251 (2008).
http://dx.doi.org/10.1007/s10544-007-9131-x
24.
24. J. S. Kuo, Y. X. Zhao, P. G. Schiro et al., Lab Chip 10(7), 837 (2010).
http://dx.doi.org/10.1039/b922301k
25.
25. H. K. Lin, S. Y. Zheng, A. J. Williams et al., Clinical Cancer Res. 16(20), 5011 (2010).
http://dx.doi.org/10.1158/1078-0432.CCR-10-1105
26.
26. S. J. Tan, R. L. Lakshmi, P. F. Chen et al., Biosens. Bioelectron. 26(4), 1701 (2010).
http://dx.doi.org/10.1016/j.bios.2010.07.054
27.
27. S. J. Tan, L. Yobas, G. Y. H. Lee et al., Biomed. Microdevices 11(4), 883 (2009).
http://dx.doi.org/10.1007/s10544-009-9305-9
28.
28. V. VanDelinder and A. Groisman, Anal. Chem. 79(5), 2023 (2007).
http://dx.doi.org/10.1021/ac061659b
29.
29. G. Vona, A. Sabile, M. Louha et al., Am. J. Pathol. 156(1), 57 (2000).
http://dx.doi.org/10.1016/S0002-9440(10)64706-2
30.
30. S. Y. Zheng, H. K. Lin, B. Lu et al., Biomed. Microdevices 13(1), 203 (2011).
http://dx.doi.org/10.1007/s10544-010-9485-3
31.
31. R. J. Wakeman and C. J. Williams, Sep. Purif. Technol. 26(1), 3 (2002).
http://dx.doi.org/10.1016/S1383-5866(01)00112-5
32.
32. B. Yap and R. D. Kamm, J. Appl. Physiol. 99(6), 2323 (2005).
http://dx.doi.org/10.1152/japplphysiol.00503.2005
33.
33. X. Dong, J. Guan, J. C. English et al., Clinical Cancer Res. 16(5), 1442 (2010).
http://dx.doi.org/10.1158/1078-0432.CCR-09-2878
34.
34. J. Hannemann, S. Meyer-Staeckling, D. Kemming et al., PLoS ONE 6(11), e26362 (2011).
http://dx.doi.org/10.1371/journal.pone.0026362
35.
35. S. M. McFaul, B. K. Lin, and H. Ma, Lab Chip 12(13), 2369 (2012).
http://dx.doi.org/10.1039/c2lc21045b
36.
36. M. A. Unger, H. P. Chou, T. Thorsen et al., Science 288(5463), 113 (2000).
http://dx.doi.org/10.1126/science.288.5463.113
37.
37. O. Lara, X. D. Tong, M. Zborowski et al., Exp. Hematol. 32(10), 891 (2004).
http://dx.doi.org/10.1016/j.exphem.2004.07.007
38.
38. K. Pantel and R. H. Brakenhoff, Nature Rev. Cancer 4(6), 448 (2004).
http://dx.doi.org/10.1038/nrc1370
39.
39. T. Gerhardt, S. Woo, and H. S. Ma, Lab Chip 11(16), 2731 (2011).
http://dx.doi.org/10.1039/c1lc20092e
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4812688 for a picture of the separated cells in the device outlet and a video showing one sorting cycle. [Supplementary Material]
41.
41. M. Absher, in Tissue Culture. Methods and Applications, edited by P. F. Krause, Jr., and M. K. Patterson Jr. (Academic Press, New York, N.Y.; London, England, 1973), p. 395.
42.
42. Q. Guo, S. Park, and H. S. Ma, Lab Chip 12(15), 2687 (2012).
http://dx.doi.org/10.1039/c2lc40205j
43.
43. B. W. Roberts and W. L. Olbricht, AIChE J. 52(1), 199 (2006).
http://dx.doi.org/10.1002/aic.10613
44.
44. M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76(18), 5465 (2004).
http://dx.doi.org/10.1021/ac049863r
45.
45. Q. Guo, S. M. McFaul, and H. Ma, Phys. Rev. E 83(5), 051910 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051910
46.
46. J. S. Marcus, W. F. Anderson, and S. R. Quake, Anal. Chem. 78(9), 3084 (2006).
http://dx.doi.org/10.1021/ac0519460
47.
47. A. Singhal, C. A. Haynes, and C. L. Hansen, Anal. Chem. 82(20), 8671 (2010).
http://dx.doi.org/10.1021/ac101956e
48.
48. D. Marrinucci, K. Bethel, R. H. Bruce et al., Human Pathol. 38(3), 514 (2007).
http://dx.doi.org/10.1016/j.humpath.2006.08.027
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/3/10.1063/1.4812688
Loading
/content/aip/journal/bmf/7/3/10.1063/1.4812688
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/3/10.1063/1.4812688
2013-06-26
2014-07-29

Abstract

The separation of cells based on their biomechanical properties, such as size and deformability, is important in applications such as the identification of circulating tumor cells, where morphological differences can be used to distinguish target cancer cells from contaminant leukocytes. Existing filtration-based separation processes are limited in their selectivity and their ability to extract the separated cells because of clogging in the filter microstructures. We present a cell separation device consisting of a hydrodynamic concentrator and a microfluidic ratchet mechanism operating in tandem. The hydrodynamic concentrator removes the majority of the fluid and a fraction of leukocytes based on size, while the microfluidic ratchet mechanism separates cancer cells from leukocytes based on a combination of size and deformability. The irreversible ratcheting process enables highly selective separation and robust extraction of separated cells. Using cancer cells spiked into leukocyte suspensions, the complete system demonstrated a yield of 97%, while enriching the concentration of target cancer cells 3000 fold relative to the concentration of leukocytes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/3/1.4812688.html;jsessionid=4o7cithr0r4q2.x-aip-live-03?itemId=/content/aip/journal/bmf/7/3/10.1063/1.4812688&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/3/10.1063/1.4812688
10.1063/1.4812688
SEARCH_EXPAND_ITEM