1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Micro- and nanofluidic technologies for epigenetic profiling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/4/10.1063/1.4816835
1.
1. B. Papp and K. Plath, Cell 152, 1324 (2013).
http://dx.doi.org/10.1016/j.cell.2013.02.043
2.
2. J. P. Lim and A. Brunet, Trends Genet. TIG 29, 176 (2013).
http://dx.doi.org/10.1016/j.tig.2012.12.008
3.
3. J. Bohacek and I. M. Mansuy, Neuropsychopharmacology 38, 220 (2013).
http://dx.doi.org/10.1038/npp.2012.110
4.
4. M. D. Anway, A. S. Cupp, M. Uzumcu, and M. K. Skinner, Science 308, 1466 (2005).
http://dx.doi.org/10.1126/science.1108190
5.
5. C. Guerrero-Bosagna, M. Settles, B. Lucker, and M. K. Skinner, PloS ONE 5, e13100 (2010).
6.
6. C. M. Guerrero-Bosagna and M. K. Skinner, Semin. Reprod. Med. 27, 403 (2009).
http://dx.doi.org/10.1055/s-0029-1237428
7.
7. D. Crews, R. Gillette, S. V. Scarpino, M. Manikkam, M. I. Savenkova, and M. K. Skinner, Proc. Natl. Acad. Sci. U.S.A. 109, 9143 (2012).
http://dx.doi.org/10.1073/pnas.1118514109
8.
8. A. P. Feinberg and B. Tycko, Nat. Rev. Cancer 4, 143 (2004).
http://dx.doi.org/10.1038/nrc1279
9.
9. P. A. Jones and S. B. Baylin, Cell 128, 683 (2007).
http://dx.doi.org/10.1016/j.cell.2007.01.029
10.
10. T. Waldmann and R. Schneider, Curr. Opin. Cell Biol. 25, 184 (2013).
http://dx.doi.org/10.1016/j.ceb.2013.01.001
11.
11. D. Grafodatskaya, B. Chung, P. Szatmari, and R. Weksberg, J. Am. Acad. Child Adolesc. Psychiatry 49, 794 (2010).
http://dx.doi.org/10.1016/j.jaac.2010.05.005
12.
12. H. Pareja-Galeano, F. Sanchis-Gomar, and S. Mayero, Acta Psychiatr. Scand. 128, 97 (2013).
http://dx.doi.org/10.1111/acps.12071
13.
13. L. Chouliaras, B. P. Rutten, G. Kenis, O. Peerbooms, P. J. Visser, F. Verhey, J. van Os, H. W. Steinbusch, and D. L. van den Hove, Prog. Neurobiol. 90, 498 (2010).
http://dx.doi.org/10.1016/j.pneurobio.2010.01.002
14.
14. D. Mastroeni, A. Grover, E. Delvaux, C. Whiteside, P. D. Coleman, and J. Rogers, Neurobiol. Aging 31, 2025 (2010).
http://dx.doi.org/10.1016/j.neurobiolaging.2008.12.005
15.
15. C. Ptak and A. Petronis, Annu. Rev. Pharmacol. Toxicol. 48, 257 (2008).
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094731
16.
16. A. Atala, Rejuvenation Res. 7, 15 (2004).
http://dx.doi.org/10.1089/154916804323105053
17.
17. A. Rizzino, Dev. Dyn. 236, 3199 (2007).
http://dx.doi.org/10.1002/dvdy.21285
18.
18. A. B. Cherry and G. Q. Daley, Cell 148, 1110 (2012).
http://dx.doi.org/10.1016/j.cell.2012.02.031
19.
19. L. M. Postovit, E. A. Seftor, R. E. Seftor, and M. J. Hendrix, Stem Cells 24, 501 (2006).
http://dx.doi.org/10.1634/stemcells.2005-0459
20.
20. K. Takahashi and S. Yamanaka, Cell 126, 663 (2006).
http://dx.doi.org/10.1016/j.cell.2006.07.024
21.
21. A. J. Carr et al., PloS ONE 4, e8152 (2009).
http://dx.doi.org/10.1371/journal.pone.0008152
22.
22. S. M. Wu and K. Hochedlinger, Nat. Cell Biol. 13, 497 (2011).
http://dx.doi.org/10.1038/ncb0511-497
23.
23. E. Pujadas and A. P. Feinberg, Cell 148, 1123 (2012).
http://dx.doi.org/10.1016/j.cell.2012.02.045
24.
24. R. Lister et al., Nature 471, 68 (2011).
http://dx.doi.org/10.1038/nature09798
25.
25. D. E. Baker, N. J. Harrison, E. Maltby, K. Smith, H. D. Moore, P. J. Shaw, P. R. Heath, H. Holden, and P. W. Andrews, Nat. Biotechnol. 25, 207 (2007).
http://dx.doi.org/10.1038/nbt1285
26.
26. M. H. Kuo and C. D. Allis, Methods 19, 425 (1999).
http://dx.doi.org/10.1006/meth.1999.0879
27.
27. K. Luger, M. L. Dechassa, and D. J. Tremethick, Nat. Rev. Mol. Cell Biol. 13, 436 (2012).
http://dx.doi.org/10.1038/nrm3382
28.
28. M. A. Rubtsov, Y. S. Polikanov, V. A. Bondarenko, Y. H. Wang, and V. M. Studitsky, Proc. Natl. Acad. Sci. U.S.A. 103, 17690 (2006).
http://dx.doi.org/10.1073/pnas.0603819103
29.
29. M. H. Sato, K. Ura, K. I. Hohmura, F. Tokumasu, S. H. Yoshimura, F. Hanaoka, and K. Takeyasu, FEBS Lett. 452, 267 (1999).
http://dx.doi.org/10.1016/S0014-5793(99)00644-4
30.
30. H. Wang, R. Bash, J. G. Yodh, G. L. Hager, D. Lohr, and S. M. Lindsay, Biophys. J. 83, 3619 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75362-9
31.
31. F. Montel, H. Menoni, M. Castelnovo, J. Bednar, S. Dimitrov, D. Angelov, and C. Faivre-Moskalenko, Biophys. J. 97, 544 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.04.042
32.
32. Y. Cui and C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 97, 127 (2000).
http://dx.doi.org/10.1073/pnas.97.1.127
33.
33. P. Gupta, J. Zlatanova, and M. Tomschik, Biophys. J. 97, 3150 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.09.032
34.
34. B. Dorigo, T. Schalch, A. Kulangara, S. Duda, R. R. Schroeder, and T. J. Richmond, Science 306, 1571 (2004).
http://dx.doi.org/10.1126/science.1103124
35.
35. S. A. Grigoryev, G. Arya, S. Correll, C. L. Woodcock, and T. Schlick, Proc. Natl. Acad. Sci. U.S.A. 106, 13317 (2009).
http://dx.doi.org/10.1073/pnas.0903280106
36.
36. T. Schalch, S. Duda, D. F. Sargent, and T. J. Richmond, Nature 436, 138 (2005).
http://dx.doi.org/10.1038/nature03686
37.
37. Y. Nishino et al., EMBO J. 31, 1644 (2012).
http://dx.doi.org/10.1038/emboj.2012.35
38.
38. T. Schlick, J. Hayes, and S. Grigoryev, J. Biol. Chem. 287, 5183 (2012).
http://dx.doi.org/10.1074/jbc.R111.305763
39.
39. M. Kruithof, F. T. Chien, A. Routh, C. Logie, D. Rhodes, and J. van Noort, Nat. Struct. Mol. Biol. 16, 534 (2009).
http://dx.doi.org/10.1038/nsmb.1590
40.
40. F. Aumann, F. Lankas, M. Caudron, and J. Langowski, Phys. Rev. E 73, 041927 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041927
41.
41. E. Fussner, R. W. Ching, and D. P. Bazett-Jones, Trends Biochem. Sci. 36, 1 (2011).
http://dx.doi.org/10.1016/j.tibs.2010.09.002
42.
42. Y. Joti, T. Hikima, Y. Nishino, F. Kamada, S. Hihara, H. Takata, T. Ishikawa, and K. Maeshima, Nucleus 3, 404 (2012).
http://dx.doi.org/10.4161/nucl.21222
43.
43. R. Collepardo-Guevara and T. Schlick, Nucleic Acids Res. 40, 8803 (2012).
http://dx.doi.org/10.1093/nar/gks600
44.
44. Y. Yang, A. P. Lyubartsev, N. Korolev, and L. Nordenskiold, Biophys. J. 96, 2082 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.10.073
45.
45. J. T. Finch and A. Klug, Proc. Natl. Acad. Sci. U.S.A. 73, 1897 (1976).
http://dx.doi.org/10.1073/pnas.73.6.1897
46.
46. A. Worcel, S. Strogatz, and D. Riley, Proc. Natl. Acad. Sci. U.S.A. 78, 1461 (1981).
http://dx.doi.org/10.1073/pnas.78.3.1461
47.
47. C. L. Woodcock, L. L. Frado, and J. B. Rattner, J. Cell Biol. 99, 42 (1984).
http://dx.doi.org/10.1083/jcb.99.1.42
48.
48. G. E. Zentner and S. Henikoff, Nat. Struct. Mol. Biol. 20, 259 (2013).
http://dx.doi.org/10.1038/nsmb.2470
49.
49. B. Fierz and T. W. Muir, Nat. Chem. Biol. 8, 417 (2012).
http://dx.doi.org/10.1038/nchembio.938
50.
50. J. A. Latham and S. Y. Dent, Nat. Struct. Mol. Biol. 14, 1017 (2007).
http://dx.doi.org/10.1038/nsmb1307
51.
51. G. J. Narlikar, H. Y. Fan, and R. E. Kingston, Cell 108, 475 (2002).
http://dx.doi.org/10.1016/S0092-8674(02)00654-2
52.
52. H. Tamaru, Genes Dev. 24, 1465 (2010).
http://dx.doi.org/10.1101/gad.1941010
53.
53. S. Rea et al., Nature 406, 593 (2000).
http://dx.doi.org/10.1038/35020506
54.
54. J. Nakayama, J. C. Rice, B. D. Strahl, C. D. Allis, and S. I. Grewal, Science 292, 110 (2001).
http://dx.doi.org/10.1126/science.1060118
55.
55. R. Jaenisch and A. Bird, Nat. Genet. 33, 245 (2003).
http://dx.doi.org/10.1038/ng1089
56.
56. L. R. Orrick, M. O. Olson, and H. Busch, Proc. Natl. Acad. Sci. U.S.A. 70, 1316 (1973).
http://dx.doi.org/10.1073/pnas.70.5.1316
57.
57. L. C. Yeoman, C. W. Taylor, and H. Busch, Biochem. Biophys. Res. Commun. 51, 956 (1973).
http://dx.doi.org/10.1016/0006-291X(73)90020-X
58.
58. J. A. Smith and L. A. Stocken, Biochem. Biophys. Res. Commun. 54, 297 (1973).
http://dx.doi.org/10.1016/0006-291X(73)90922-4
59.
59. K. Ueda, A. Omachi, M. Kawaichi, and O. Hayaishi, Proc. Natl. Acad. Sci. U.S.A. 72, 205 (1975).
http://dx.doi.org/10.1073/pnas.72.1.205
60.
60. K. Nakashima, T. Hagiwara, and M. Yamada, J. Biol. Chem. 277, 49562 (2002).
http://dx.doi.org/10.1074/jbc.M208795200
61.
61. D. Nathan et al., Genes Dev. 20, 966 (2006).
http://dx.doi.org/10.1101/gad.1404206
62.
62. C. S. Ku and D. H. Roukos, Expert Rev. Med. Devices 10, 1 (2013).
http://dx.doi.org/10.1586/erd.12.63
63.
63. B. E. Bernstein, A. Meissner, and E. S. Lander, Cell 128, 669 (2007).
http://dx.doi.org/10.1016/j.cell.2007.01.033
64.
64. R. J. Schmitz et al., Nature 495, 193 (2013).
http://dx.doi.org/10.1038/nature11968
65.
65. J. R. Ecker, W. A. Bickmore, I. Barroso, J. K. Pritchard, Y. Gilad, and E. Segal, Nature 489, 52 (2012).
http://dx.doi.org/10.1038/489052a
66.
66. L. P. O'Neill, M. D. VerMilyea, and B. M. Turner, Nat. Genet. 38, 835 (2006).
http://dx.doi.org/10.1038/ng1820
67.
67. J. D. Nelson, O. Denisenko, P. Sova, and K. Bomsztyk, Nucleic Acids Res. 34, e2 (2006).
http://dx.doi.org/10.1093/nar/gnj004
68.
68. J. A. Dahl and P. Collas, Stem Cells 25, 1037 (2007).
http://dx.doi.org/10.1634/stemcells.2006-0430
69.
69. S. Flanagin, J. D. Nelson, D. G. Castner, O. Denisenko, and K. Bomsztyk, Nucleic Acids Res. 36, e17 (2008).
http://dx.doi.org/10.1093/nar/gkn001
70.
70. J. A. Dahl and P. Collas, Nat. Protoc. 3, 1032 (2008).
http://dx.doi.org/10.1038/nprot.2008.68
71.
71. J. A. Dahl and P. Collas, Nucleic Acids Res. 36, e15 (2008).
http://dx.doi.org/10.1093/nar/gkm1158
72.
72. H. J. Oh, J. Y. Park, S. E. Park, B. Y. Lee, J. S. Park, S. K. Kim, T. J. Yoon, and S. H. Lee, Anal. Chem. 81, 2832 (2009).
http://dx.doi.org/10.1021/ac802034s
73.
73. A. R. Wu, J. B. Hiatt, R. Lu, J. L. Attema, N. A. Lobo, I. L. Weissman, M. F. Clarke, and S. R. Quake, Lab Chip 9, 1365 (2009).
http://dx.doi.org/10.1039/b819648f
74.
74. A. R. Wu, T. L. Kawahara, N. A. Rapicavoli, J. van Riggelen, E. H. Shroff, L. Xu, D. W. Felsher, H. Y. Chang, and S. R. Quake, Lab Chip 12, 2190 (2012).
http://dx.doi.org/10.1039/c2lc21290k
75.
75. T. Geng, N. Bao, M. D. Litt, T. G. Glaros, L. Li, and C. Lu, Lab Chip 11, 2842 (2011).
http://dx.doi.org/10.1039/c1lc20253g
76.
76. N. Douville, D. Huh, and S. Takayama, Anal. Bioanal. Chem. 391, 2395 (2008).
http://dx.doi.org/10.1007/s00216-008-1995-y
77.
77. W. Reisner et al., Phys. Rev. Lett. 94, 196101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.196101
78.
78. R. Chantiwas, S. Park, S. A. Soper, B. C. Kim, S. Takayama, V. Sunkara, H. Hwang, and Y. K. Cho, Chem. Soc. Rev. 40, 3677 (2011).
http://dx.doi.org/10.1039/c0cs00138d
79.
79. W. Reisner, J. N. Pedersen, and R. H. Austin, Rep. Prog. Phys. 75, 106601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/10/106601
80.
80. E. T. Lam et al., Nat. Biotechnol. 30, 771 (2012).
http://dx.doi.org/10.1038/nbt.2303
81.
81. B. R. Cipriany, R. Zhao, P. J. Murphy, S. L. Levy, C. P. Tan, H. G. Craighead, and P. D. Soloway, Anal. Chem. 82, 2480 (2010).
http://dx.doi.org/10.1021/ac9028642
82.
82. B. R. Cipriany et al., Proc. Natl. Acad. Sci. U.S.A. 109, 8477 (2012).
http://dx.doi.org/10.1073/pnas.1117549109
83.
83. T. Matsuoka, B. C. Kim, J. Huang, N. J. Douville, M. D. Thouless, and S. Takayama, Nano Lett. 12, 6480 (2012).
http://dx.doi.org/10.1021/nl304063f
84.
84. J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, Anal. Bioanal. Chem. 378, 1678 (2004).
http://dx.doi.org/10.1007/s00216-004-2526-0
85.
85. S. L. Levy and H. G. Craighead, Chem. Soc. Rev. 39, 1133 (2010).
http://dx.doi.org/10.1039/b820266b
86.
86. C. C. Hsieh, A. Balducci, and P. S. Doyle, Nano Lett. 8, 1683 (2008).
http://dx.doi.org/10.1021/nl080605+
87.
87. D. E. Streng, S. F. Lim, J. Pan, A. Karpusenka, and R. Riehn, Lab Chip 9, 2772 (2009).
http://dx.doi.org/10.1039/b909217j
88.
88. P. J. Murphy, B. R. Cipriany, C. B. Wallin, C. Y. Ju, K. Szeto, J. A. Hagarman, J. J. Benitez, H. G. Craighead, and P. D. Soloway, Proc. Natl. Acad. Sci. U.S.A. 110, 7772 (2013).
http://dx.doi.org/10.1073/pnas.1218495110
89.
89. A. Cerf, H. C. Tian, and H. G. Craighead, ACS Nano 6, 7928 (2012).
http://dx.doi.org/10.1021/nn3023624
90.
90. M. Baday, A. Cravens, A. Hastie, H. Kim, D. E. Kudeki, P. Y. Kwok, M. Xiao, and P. R. Selvin, Nano Lett. 12, 3861 (2012).
http://dx.doi.org/10.1021/nl302069q
91.
91. M. C. Cheng, A. T. Leske, T. Matsuoka, B. C. Kim, J. Lee, M. A. Burns, S. Takayama, and J. S. Biteen, J. Phys. Chem. B 117, 4406 (2013).
http://dx.doi.org/10.1021/jp307635v
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816835
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The concept of epigenetic regulation and reprogramming. Fertilized egg represents totipotency or iPS and ES represents pluripotency, they have the potential to differentiate down all pathways through dynamic epigenetic regulation. Bottom roots represent differentiated cells such as skin, neurons, liver, lung, muscle, blood cells, etc. Alternatively, differentiated cell types in an individual can reverse their fate through epigenetic reprogramming. These induced pluripotent cells can be re-differentiated to various cell types through dynamic epigenetic regulation, but cannot develop into an individual.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of DNA folding in the cell and higher coarse-grained models of chromatin. (a) Bare DNA is folded to form highly condensed chromatin structures such as a chromosome. The structure of compact chromatin is still uncertain but a compact chromatin fiber is a likely candidate. Reprinted with permission from Schlick , J. Biol. Chem. , 5183 (2012). Copyright 2012 American Society for Biochemistry and Molecular Biology. (b) A chromatin fiber model can be defined by the opening angle between the incoming and outgoing linker DNA of length l, torsional angle of the linker DNA, and the interactions between nucleosomes and linker DNA. Reprinted with permission from Aumann , Phys. Rev. E , 041927 (2006). Copyright 2006 American Physical Society. (c) A heteromorphic-chromatin stretching simulation where the components such as linker histone and the nucleosome surface charge distribution are explicitly modeled. Reprinted with permission from Schlick , J. Biol. Chem. , 5183 (2012). Copyright 2012 American Society for Biochemistry and Molecular Biology.

Image of FIG. 3.

Click to view

FIG. 3.

Transcriptional relationship between chromatin structure and epigenetic modifications on histones. Gene transcriptional activity can be controlled by chromatin structure such as heterochromatin and euchromatin. These chromatin structures can also be controlled by histone modifications, as demonstrated in the diagram which shows post-translational histone modifications on each histone (Ac, acetylation; Me, Methylation).

Image of FIG. 4.

Click to view

FIG. 4.

Micro/nanofluidic technologies for ChIP assays. (a) Schematic of a DNA-enrichment microfluidic chip. Reprinted with permission from Oh , Anal. Chem. , 2832 (2009). Copyright 2009 American Chemical Society. (b) Automated microfluidic ChIP assay device. Reprinted with permission from Wu , Lab Chip , 1365 (2009). Copyright 2009 Royal Society of Chemistry. (c) High throughput automated ChIP assay platform. Reprinted with permission from Wu , Lab Chip , 2190 (2012). Copyright 2012 Royal Society of Chemistry. (d) ChIP assay platform for histone modification analysis of a low number of cells. Reprinted with permission from Geng , Lab Chip , 2842 (2011). Copyright 2011 Royal Society of Chemistry.

Image of FIG. 5.

Click to view

FIG. 5.

Chromatin linearization in micro/nanofluidic systems. (a) Schematics of reconstituted chromatin linearization in nanochannels. (b) Linearization of chromatin assembled from lambda-DNA and bare lambda DNA in nanochannels. Reprinted with permission from Streng , Lab Chip , 2772 (2009). Copyright 2009 Royal Society of Chemistry. (c) Experimental platform for single chromatin analysis at the nanoscale. (d) Coincidence two color measurements of stained DNA and GFP expressed histone on a single chromatin. Reprinted with permission from Cipriany , Anal. Chem. , 2480 (2010). Copyright 2010 American Chemical Society. (e) Chromatin elongation induced by hydrodynamic squeezing flow as well as confinement effect as channel narrows. (f) Multi-color epigenetic marker mapping for histone-H3K9me3 or histone-H4Ac on linearized chromatin. Reprinted with permission from Matsuoka , Nano Lett. , 6480 (2012). Copyright 2012 American Chemical Society. (g) Individual chromatin molecules contain valuable genetic and epigenetic information. Reprinted with permission from Cerf , ACS Nano , 7928 (2012). Copyright 2012 American Chemical Society.

Tables

Generic image for table

Click to view

Table I.

Comparison for methods of conventional ChIP, improved ChIP, and ChIP in micro/nanofluidics.

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4816835
2013-07-24
2014-04-21

Abstract

This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4816835.html;jsessionid=11mqap5i26nfr.x-aip-live-03?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4816835&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Micro- and nanofluidic technologies for epigenetic profiling
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816835
10.1063/1.4816835
SEARCH_EXPAND_ITEM