1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Protein immobilization techniques for microfluidic assays
Rent:
Rent this article for
Access full text Article
    Dohyun Kim1 and Amy E. Herr2,3,a)
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea
    2 Department of Bioengineering, University of California, Berkeley, Berkeley, California 94706, USA
    3 The University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California 94706, USA
    a) Author to whom correspondence should be addressed. Email: aeh@berkeley.edu
    Biomicrofluidics 7, 041501 (2013); http://dx.doi.org/10.1063/1.4816934
/content/aip/journal/bmf/7/4/10.1063/1.4816934
1.
1. V. Gauci, E. Wright, and J. Coorssen, J. Chem. Biol. 4, 3 (2011).
http://dx.doi.org/10.1007/s12154-010-0043-5
2.
2. E. F. Petricoin, K. C. Zoon, E. C. Kohn, J. C. Barrett, and L. A. Liotta, Nat. Rev. Drug Discovery 1, 683 (2002).
http://dx.doi.org/10.1038/nrd891
3.
3. C. A. Borrebaeck, Immunol. Today 21, 379 (2000).
http://dx.doi.org/10.1016/S0167-5699(00)01683-2
4.
4. J. A. Ludwig and J. N. Weinstein, Nat. Rev. Cancer 5, 845 (2005).
http://dx.doi.org/10.1038/nrc1739
5.
5. K. M. Koeller and C.-H. Wong, Nature 409, 232 (2001).
http://dx.doi.org/10.1038/35051706
6.
6. J. B. van Beilen and Z. Li, Curr. Opin. Biotechnol. 13, 338 (2002).
http://dx.doi.org/10.1016/S0958-1669(02)00334-8
7.
7. J. P. Rasor and E. Voss, Appl. Catal. A 221, 145 (2001).
http://dx.doi.org/10.1016/S0926-860X(01)00804-3
8.
8. A. H. Ng, U. Uddayasankar, and A. R. Wheeler, Anal. Bioanal. Chem. 397, 991 (2010).
http://dx.doi.org/10.1007/s00216-010-3678-8
9.
9. T. G. Henares, F. Mizutani, and H. Hisamoto, Anal. Chim. Acta 611, 17 (2008).
http://dx.doi.org/10.1016/j.aca.2008.01.064
10.
10. A. Bange, H. B. Halsall, and W. R. Heineman, Biosens. Bioelectron. 20, 2488 (2005).
http://dx.doi.org/10.1016/j.bios.2004.10.016
11.
11. J. Křenková and F. Foret, Electrophoresis 25, 3550 (2004).
http://dx.doi.org/10.1002/elps.200406096
12.
12. Y. Asanomi, H. Yamaguchi, M. Miyazaki, and H. Maeda, Molecules 16, 6041 (2011).
http://dx.doi.org/10.3390/molecules16076041
13.
13. M. Miyazaki and H. Maeda, Trends Biotechnol. 24, 463 (2006).
http://dx.doi.org/10.1016/j.tibtech.2006.08.002
14.
14. G. M. Whitesides, Nature 442, 368 (2006).
http://dx.doi.org/10.1038/nature05058
15.
15. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, Science 282, 484 (1998).
http://dx.doi.org/10.1126/science.282.5388.484
16.
16. C. J. Easley, J. M. Karlinsey, J. M. Bienvenue, L. A. Legendre, M. G. Roper, S. H. Feldman, M. A. Hughes, E. L. Hewlett, T. J. Merkel, and J. P. Ferrance, Proc. Natl. Acad. Sci. U.S.A. 103, 19272 (2006).
http://dx.doi.org/10.1073/pnas.0604663103
17.
17. P. Liu, X. Li, S. A. Greenspoon, J. R. Scherer, and R. A. Mathies, Lab Chip 11, 1041 (2011).
http://dx.doi.org/10.1039/c0lc00533a
18.
18. M. He and A. E. Herr, J. Am. Chem. Soc. 132, 2512 (2010).
http://dx.doi.org/10.1021/ja910164d
19.
19. S. Q. Tia, M. He, D. Kim, and A. E. Herr, Anal. Chem. 83, 3581 (2011).
http://dx.doi.org/10.1021/ac200322z
20.
20. D. Kim, K. Karns, S. Q. Tia, M. He, and A. E. Herr, Anal. Chem. 84, 2533 (2012).
http://dx.doi.org/10.1021/ac3000013
21.
21. A. J. Hughes, R. K. Lin, D. M. Peehl, and A. E. Herr, Proc. Natl. Acad. Sci. U.S.A. 109, 5972 (2012).
http://dx.doi.org/10.1073/pnas.1108617109
22.
22. A. J. Hughes and A. E. Herr, Proc. Natl. Acad. Sci. U.S.A. 109, 21450 (2012).
http://dx.doi.org/10.1073/pnas.1207754110
23.
23. M. He, J. Novak, B. A. Julian, and A. E. Herr, J. Am. Chem. Soc. 133, 19610 (2011).
http://dx.doi.org/10.1021/ja207963f
24.
24. M. Chung, D. Kim, and A. E. Herr, “ Microchamber Western blotting using poly-L-lysine conjugated polyacrylamide gel for blotting of SDS coated proteins,” Anal. Chem. (to be published).
http://dx.doi.org/10.1021/ac401012j
25.
25. H. Schroeder, M. Adler, K. Gerigk, B. Muüller-Chorus, F. Goütz, and C. M. Niemeyer, Anal. Chem. 81, 1275 (2009).
http://dx.doi.org/10.1021/ac802228k
26.
26. R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath, J. Am. Chem. Soc. 129, 1959 (2007).
http://dx.doi.org/10.1021/ja065930i
27.
27. M. Wolf, D. Juncker, B. Michel, P. Hunziker, and E. Delamarche, Biosens. Bioelectron. 19, 1193 (2004).
http://dx.doi.org/10.1016/j.bios.2003.11.003
28.
28. A. Bhattacharyya and C. Klapperich, Biomed. Microdevices 9, 245 (2007).
http://dx.doi.org/10.1007/s10544-006-9026-2
29.
29. C. Jönsson, M. Aronsson, G. Rundström, C. Pettersson, I. Mendel-Hartvig, J. Bakker, E. Martinsson, B. Liedberg, B. MacCraith, O. Öhman, and J. Melin, Lab Chip 8, 1191 (2008).
http://dx.doi.org/10.1039/b800297e
30.
30. Y.-N. Yang, H.-I. Lin, J.-H. Wang, S.-C. Shiesh, and G.-B. Lee, Biosens. Bioelectron. 24, 3091 (2009).
http://dx.doi.org/10.1016/j.bios.2009.03.034
31.
31. K.-S. Shin, S. W. Lee, K.-C. Han, S. K. Kim, E. K. Yang, J. H. Park, B.-K. Ju, J. Y. Kang, and T. S. Kim, Biosens. Bioelectron. 22, 2261 (2007).
http://dx.doi.org/10.1016/j.bios.2006.11.011
32.
32. N. Malmstadt, A. S. Hoffman, and P. S. Stayton, Lab Chip 4, 412 (2004).
http://dx.doi.org/10.1039/b315394k
33.
33. D. Yang, X. Niu, Y. Liu, Y. Wang, X. Gu, L. Song, R. Zhao, L. Ma, Y. Shao, and X. Jiang, Adv. Mater. 20, 4770 (2008).
http://dx.doi.org/10.1002/adma.200801302
34.
34. Q. Xiang, G. Hu, Y. Gao, and D. Li, Biosens. Bioelectron. 21, 2006 (2006).
http://dx.doi.org/10.1016/j.bios.2005.09.019
35.
35. H. Wang, Y. Liu, C. Liu, J. Huang, P. Yang, and B. Liu, Electrochem. Commun. 12, 258 (2010).
http://dx.doi.org/10.1016/j.elecom.2009.12.008
36.
36. S. N. Tan, L. Ge, H. Y. Tan, W. K. Loke, J. Gao, and W. Wang, Anal. Chem. 84, 10071 (2012).
http://dx.doi.org/10.1021/ac302537r
37.
37. K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, Anal. Chem. 71, 5430 (1999).
http://dx.doi.org/10.1021/ac9907686
38.
38. Y. Dong, K. Phillips, and Q. Cheng, Lab Chip 6, 675 (2006).
http://dx.doi.org/10.1039/b514902a
39.
39. T. Yang, S.-Y. Jung, H. Mao, and P. S. Cremer, Anal. Chem. 73, 165 (2001).
http://dx.doi.org/10.1021/ac000997o
40.
40. J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emnéus, Anal. Chem. 74, 2994 (2002).
http://dx.doi.org/10.1021/ac015645b
41.
41. B. Cannon, N. Weaver, Q. Pu, V. Thiagarajan, S. Liu, J. Huang, M. W. Vaughn, and K. H. Cheng, Langmuir 21, 9666 (2005).
http://dx.doi.org/10.1021/la0502645
42.
42. E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, Anal. Chem. 78, 107 (2006).
http://dx.doi.org/10.1021/ac051288j
43.
43. C. Hou and A. E. Herr, Anal. Chem. 82, 3343 (2010).
http://dx.doi.org/10.1021/ac100182j
44.
44. A. E. Herr, A. V. Hatch, D. J. Throckmorton, H. M. Tran, J. S. Brennan, W. V. Giannobile, and A. K. Singh, Proc. Natl. Acad. Sci. U.S.A. 104, 5268 (2007).
http://dx.doi.org/10.1073/pnas.0607254104
45.
45. K. Karns and A. E. Herr, Anal. Chem. 83, 8115 (2011).
http://dx.doi.org/10.1021/ac202061v
46.
46. M. He and A. E. Herr, Nat. Protoc. 5, 1844 (2010).
http://dx.doi.org/10.1038/nprot.2010.142
47.
47. D. A. Markov, K. Swinney, and D. J. Bornhop, J. Am. Chem. Soc. 126, 16659 (2004).
http://dx.doi.org/10.1021/ja047820m
48.
48. D. Gerber, S. J. Maerkl, and S. R. Quake, Nat. Methods 6, 71 (2009).
http://dx.doi.org/10.1038/nmeth.1289
49.
49. E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, and E. T. Lagally, Lab Chip 10, 581 (2010).
http://dx.doi.org/10.1039/b920589f
50.
50. X. Chen, M. A. Kapil, A. J. Hughes, and A. E. Herr, Anal. Chem. 83, 6573 (2011).
http://dx.doi.org/10.1021/ac200982j
51.
51. S. Q. Tia, K. Brown, D. Chen, and A. E. Herr, Anal. Chem. 85, 2882 (2013).
http://dx.doi.org/10.1021/ac3035053
52.
52. M. S. Thomsen, P. Pölt, and B. Nidetzky, Chem. Commun. 2007, 2527.
http://dx.doi.org/10.1039/B702115A
53.
53. A. J. Hughes and A. E. Herr, Anal. Chem. 82, 3803 (2010).
http://dx.doi.org/10.1021/ac100201z
54.
54. M. Baeza, C. López, J. Alonso, J. López-Santín, and G. Álvaro, Anal. Chem. 82, 1006 (2010).
http://dx.doi.org/10.1021/ac902267f
55.
55. H. Mao, T. Yang, and P. S. Cremer, Anal. Chem. 74, 379 (2002).
http://dx.doi.org/10.1021/ac010822u
56.
56. P. He, G. Greenway, and S. J. Haswell, Microfluid. Nanofluid. 8, 565 (2010).
http://dx.doi.org/10.1007/s10404-009-0476-8
57.
57. W.-G. Koh and M. Pishko, Sens. Actuators B 106, 335 (2005).
http://dx.doi.org/10.1016/j.snb.2004.08.025
58.
58. S. B. Brueggemeier, S. J. Kron, and S. P. Palecek, Anal. Biochem. 329, 180 (2004).
http://dx.doi.org/10.1016/j.ab.2004.02.012
59.
59. S. Köstler, V. Ribitsch, K. Stana-Kleinschek, G. Jakopic, and S. Strnad, Colloids Surf., A 270–271, 107 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.05.049
60.
60. S. Ekström, P. Önnerfjord, J. Nilsson, M. Bengtsson, T. Laurell, and G. Marko-Varga, Anal. Chem. 72, 286 (2000).
http://dx.doi.org/10.1021/ac990731l
61.
61. D. S. Peterson, T. Rohr, F. Svec, and J. M. Fréchet, Anal. Chem. 74, 4081 (2002).
http://dx.doi.org/10.1021/ac020180q
62.
62. S. Cho, S. H. Lee, W. J. Chung, Y. K. Kim, Y. S. Lee, and B. G. Kim, Electrophoresis 25, 3730 (2004).
http://dx.doi.org/10.1002/elps.200406103
63.
63. Y. Li, X. Xu, B. Yan, C. Deng, W. Yu, P. Yang, and X. Zhang, J. Proteome Res. 6, 2367 (2007).
http://dx.doi.org/10.1021/pr060558r
64.
64. H. Wu, Y. Tian, B. Liu, H. Lu, X. Wang, J. Zhai, H. Jin, P. Yang, Y. Xu, and H. Wang, J. Proteome Res. 3, 1201 (2004).
http://dx.doi.org/10.1021/pr049889z
65.
65. K. Jo, M. L. Heien, L. B. Thompson, M. Zhong, R. G. Nuzzo, and J. V. Sweedler, Lab Chip 7, 1454 (2007).
http://dx.doi.org/10.1039/b706940e
66.
66. S. S. Park, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim, Electrophoresis 24, 200 (2003).
http://dx.doi.org/10.1002/elps.200390015
67.
67. J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, Anal. Chem. 73, 2648 (2001).
http://dx.doi.org/10.1021/ac001126h
68.
68. J. Yakovleva, R. Davidsson, M. Bengtsson, T. Laurell, and J. Emnéus, Biosens. Bioelectron. 19, 21 (2003).
http://dx.doi.org/10.1016/S0956-5663(03)00126-X
69.
69. Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
http://dx.doi.org/10.1007/s10404-008-0392-3
70.
70. J.-W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, Lab Chip 2, 27 (2002).
http://dx.doi.org/10.1039/b107540n
71.
71. J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, Electrophoresis 21, 27 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.3.CO;2-3
72.
72. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, Electrophoresis 23, 3461 (2002).
http://dx.doi.org/10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
73.
73. S. K. Sia and G. M. Whitesides, Electrophoresis 24, 3563 (2003).
http://dx.doi.org/10.1002/elps.200305584
74.
74. H. Becker and L. E. Locascio, Talanta 56, 267 (2002).
http://dx.doi.org/10.1016/S0039-9140(01)00594-X
75.
75. D. M. Dankbar and G. Gauglitz, Anal. Bioanal. Chem. 386, 1967 (2006).
http://dx.doi.org/10.1007/s00216-006-0871-x
76.
76. H. Becker and C. Gärtner, Electrophoresis 21, 12 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7
77.
77. S. Laib and B. D. MacCraith, Anal. Chem. 79, 6264 (2007).
http://dx.doi.org/10.1021/ac062420y
78.
78. Y. Bai, C. G. Koh, M. Boreman, Y.-J. Juang, I.-C. Tang, L. J. Lee, and S.-T. Yang, Langmuir 22, 9458 (2006).
http://dx.doi.org/10.1021/la061123l
79.
79. Y. Yuan, H. He, and L. J. Lee, Biotechnol. Bioeng. 102, 891 (2009).
http://dx.doi.org/10.1002/bit.22136
80.
80. X. Wen, H. He, and L. J. Lee, J. Immunol. Methods 350, 97 (2009).
http://dx.doi.org/10.1016/j.jim.2009.07.011
81.
81. A. Y. Rubina, A. Kolchinsky, A. A. Makarov, and A. S. Zasedatelev, Proteomics 8, 817 (2008).
http://dx.doi.org/10.1002/pmic.200700629
82.
82. A. G. Lee, C. P. Arena, D. J. Beebe, and S. P. Palecek, Biomacromolecules 11, 3316 (2010).
http://dx.doi.org/10.1021/bm100792y
83.
83. A. G. Lee, D. J. Beebe, and S. P. Palecek, Biomed. Microdevices 14, 247 (2012).
http://dx.doi.org/10.1007/s10544-011-9602-y
84.
84. J. De Jong, R. Lammertink, and M. Wessling, Lab Chip 6, 1125 (2006).
http://dx.doi.org/10.1039/b603275c
85.
85. D. S. Peterson, Lab Chip 5, 132 (2005).
http://dx.doi.org/10.1039/b405311g
86.
86. G. H. Seong and R. M. Crooks, J. Am. Chem. Soc. 124, 13360 (2002).
http://dx.doi.org/10.1021/ja020932y
87.
87. Y.-C. Wang and J. Han, Lab Chip 8, 392 (2008).
http://dx.doi.org/10.1039/b717220f
88.
88. W. J. Chung, M. S. Kim, S. Cho, S. S. Park, J. H. Kim, Y. K. Kim, B. G. Kim, and Y. S. Lee, Electrophoresis 26, 694 (2005).
http://dx.doi.org/10.1002/elps.200410005
89.
89. K. Sato, M. Yamanaka, H. Takahashi, M. Tokeshi, H. Kimura, and T. Kitamori, Electrophoresis 23, 734 (2002).
http://dx.doi.org/10.1002/1522-2683(200203)23:5<734::AID-ELPS734>3.0.CO;2-W
90.
90. Y. H. Tennico, D. Hutanu, M. T. Koesdjojo, C. M. Bartel, and V. T. Remcho, Anal. Chem. 82, 5591 (2010).
http://dx.doi.org/10.1021/ac101269u
91.
91. T. Richter, L. L. Shultz-Lockyear, R. D. Oleschuk, U. Bilitewski, and D. J. Harrison, Sens. Actuators B 81, 369 (2002).
http://dx.doi.org/10.1016/S0925-4005(01)00963-7
92.
92. V. Sivagnanam, B. Song, C. Vandevyver, and M. A. Gijs, Anal. Chem. 81, 6509 (2009).
http://dx.doi.org/10.1021/ac9009319
93.
93. K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem. 72, 1144 (2000).
http://dx.doi.org/10.1021/ac991151r
94.
94. M. He and A. E. Herr, Anal. Chem. 81, 8177 (2009).
http://dx.doi.org/10.1021/ac901392u
95.
95. W. Zhan, G. H. Seong, and R. M. Crooks, Anal. Chem. 74, 4647 (2002).
http://dx.doi.org/10.1021/ac020340y
96.
96. K. H. Park, H. G. Park, J.-H. Kim, and K. H. Seong, Biosens. Bioelectron. 22, 613 (2006).
http://dx.doi.org/10.1016/j.bios.2006.01.029
97.
97. W.-C. Sung, H.-H. Chen, H. Makamba, and S.-H. Chen, Anal. Chem. 81, 7967 (2009).
http://dx.doi.org/10.1021/ac901138w
98.
98. K. Sakai-Kato, M. Kato, and T. Toyo'oka, Anal. Chem. 75, 388 (2003).
http://dx.doi.org/10.1021/ac026240+
99.
99. J. Ji, Y. Zhang, X. Zhou, J. Kong, Y. Tang, and B. Liu, Anal. Chem. 80, 2457 (2008).
http://dx.doi.org/10.1021/ac702218v
100.
100. H. Hisamoto, Y. Shimizu, K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hibara, and T. Kitamori, Anal. Chem. 75, 350 (2003).
http://dx.doi.org/10.1021/ac025794+
101.
101. R. P. Sebra, K. S. Masters, C. Y. Cheung, C. N. Bowman, and K. S. Anseth, Anal. Chem. 78, 3144 (2006).
http://dx.doi.org/10.1021/ac052246y
102.
102. S. Zhang, Nature Mater. 3, 7 (2004).
http://dx.doi.org/10.1038/nmat1047
103.
103. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem. 82, 3 (2010).
http://dx.doi.org/10.1021/ac9013989
104.
104. C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, Angew. Chem., Int. Ed. 49, 4771 (2010).
http://dx.doi.org/10.1002/anie.201001005
105.
105. J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, and P. Yager, Lab Chip 10, 2659 (2010).
http://dx.doi.org/10.1039/c004821f
106.
106. F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007).
http://dx.doi.org/10.1021/bm061197b
107.
107. K. Nakanishi, T. Sakiyama, Y. Kumada, K. Imamura, and H. Imanaka, Curr. Proteomics 5, 161 (2008).
http://dx.doi.org/10.2174/157016408785909622
108.
108. K. E. Petersen, Proc. IEEE 70, 420 (1982).
http://dx.doi.org/10.1109/PROC.1982.12331
109.
109. S. C. Terry, J. H. Jerman, and J. B. Angell, IEEE Trans. Electron Devices 26, 1880 (1979).
http://dx.doi.org/10.1109/T-ED.1979.19791
110.
110. M. Li, Sci. China, Ser. G 55, 2316 (2012).
http://dx.doi.org/10.1007/s11433-012-4930-3
111.
111. Z. H. Wang, Y. H. Meng, P. Q. Ying, C. Qi, and G. Jin, Electrophoresis 27, 4078 (2006).
http://dx.doi.org/10.1002/elps.200500956
112.
112. L. M. Lee, R. L. Heimark, R. Guzman, J. C. Baygents, and Y. Zohar, Lab Chip 6, 1080 (2006).
http://dx.doi.org/10.1039/b603095e
113.
113. J. A. Lee, S. Hwang, J. Kwak, S. I. Park, S. S. Lee, and K.-C. Lee, Sens. Actuators B 129, 372 (2008).
http://dx.doi.org/10.1016/j.snb.2007.08.034
114.
114. A. Iles, A. Oki, and N. Pamme, Microfluid. Nanofluid. 3, 119 (2007).
http://dx.doi.org/10.1007/s10404-006-0101-z
115.
115. D. J. Harrison, A. Manz, Z. Fan, H. Lüdi, and H. M. Widmer, Anal. Chem. 64, 1926 (1992).
http://dx.doi.org/10.1021/ac00041a030
116.
116. L. Bousse, S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow, Anal. Chem. 73, 1207 (2001).
http://dx.doi.org/10.1021/ac0012492
117.
117. N. R. Glass, R. Tjeung, P. Chan, L. Y. Yeo, and J. R. Friend, Biomicrofluidics 5, 036501 (2011).
http://dx.doi.org/10.1063/1.3625605
118.
118. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298, 580 (2002).
http://dx.doi.org/10.1126/science.1076996
119.
119. Y. Wang, H.-H. Lai, M. Bachman, C. E. Sims, G. Li, and N. L. Allbritton, Anal. Chem. 77, 7539 (2005).
http://dx.doi.org/10.1021/ac0509915
120.
120. G. Sui, J. Wang, C.-C. Lee, W. Lu, S. P. Lee, J. V. Leyton, A. M. Wu, and H.-R. Tseng, Anal. Chem. 78, 5543 (2006).
http://dx.doi.org/10.1021/ac060605z
121.
121. C. D. Chin, V. Linder, and S. K. Sia, Lab Chip 7, 41 (2007).
http://dx.doi.org/10.1039/b611455e
122.
122. C. D. Chin, V. Linder, and S. K. Sia, Lab Chip 12, 2118 (2012).
http://dx.doi.org/10.1039/c2lc21204h
123.
123. C. Kagebayashi, I. Yamaguchi, A. Akinaga, H. Kitano, K. Yokoyama, M. Satomura, T. Kurosawa, M. Watanabe, T. Kawabata, and W. Chang, Anal. Biochem. 388, 306 (2009).
http://dx.doi.org/10.1016/j.ab.2009.02.030
124.
124. H. He, Y. Yuan, W. Wang, N.-R. Chiou, A. J. Epstein, and L. J. Lee, Biomicrofluidics 3, 022401 (2009).
http://dx.doi.org/10.1063/1.3116665
125.
125. G. T. Hermansson, Bioconjugate Techniques, 2nd ed. (Academic Press, San Diego, 2008).
126.
126. C. Wang, R. Oleschuk, F. Ouchen, J. Li, P. Thibault, and D. J. Harrison, Rapid Commun. Mass Spectrom. 14, 1377 (2000).
http://dx.doi.org/10.1002/1097-0231(20000815)14:15<1377::AID-RCM31>3.0.CO;2-2
127.
127. J. Page, R. Derango, and A. Huang, Colloids Surf., A 132, 193 (1998).
http://dx.doi.org/10.1016/S0927-7757(97)00176-3
128.
128. J. Guisán, Enzyme Microb. Technol. 10, 375 (1988).
http://dx.doi.org/10.1016/0141-0229(88)90018-X
129.
129. J. L. Drury and D. J. Mooney, Biomaterials 24, 4337 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00340-5
130.
130. J. J. Park, X. Luo, H. Yi, T. M. Valentine, G. F. Payne, W. E. Bentley, R. Ghodssi, and G. W. Rubloff, Lab Chip 6, 1315 (2006).
http://dx.doi.org/10.1039/b603101c
131.
131. A. E. Herr and A. K. Singh, Anal. Chem. 76, 4727 (2004).
http://dx.doi.org/10.1021/ac049686u
132.
132. C. Hou and A. E. Herr, Analyst 138, 158 (2013).
http://dx.doi.org/10.1039/c2an36033k
133.
133. D. J. Beebe, J. S. Moore, Q. Yu, R. H. Liu, M. L. Kraft, B.-H. Jo, and C. Devadoss, Proc. Natl. Acad. Sci. U.S.A. 97, 13488 (2000).
http://dx.doi.org/10.1073/pnas.250273097
134.
134. Y. Yang, S.-W. Nam, N. Y. Lee, Y. S. Kim, and S. Park, Ultramicroscopy 108, 1384 (2008).
http://dx.doi.org/10.1016/j.ultramic.2008.04.044
135.
135. G. J. Sommer and A. V. Hatch, Electrophoresis 30, 742 (2009).
http://dx.doi.org/10.1002/elps.200800598
136.
136. Y. Liu, D. Yang, T. Yu, and X. Jiang, Electrophoresis 30, 3269 (2009).
http://dx.doi.org/10.1002/elps.200900128
137.
137. M. Harvey, Optimization of Nitrocellulose Membrane-Based Immunoassays (Schleicher & Schuell, Keene, 1991).
138.
138. X. Li, D. R. Ballerini, and W. Shen, Biomicrofluidics 6, 011301 (2012).
http://dx.doi.org/10.1063/1.3687398
139.
139. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, Trends Biotechnol. 27, 230 (2009).
http://dx.doi.org/10.1016/j.tibtech.2008.12.004
140.
140. J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, Waltham, 2010).
141.
141. G. Schreiber and A. R. Fersht, Nat. Struct. Mol. Biol. 3, 427 (1996).
http://dx.doi.org/10.1038/nsb0596-427
142.
142. P. Gong and R. Levicky, Proc. Natl. Acad. Sci. U.S.A. 105, 5301 (2008).
http://dx.doi.org/10.1073/pnas.0709416105
143.
143. B. S. Jacobson and D. Branton, Science 195, 302 (1977).
http://dx.doi.org/10.1126/science.831278
144.
144. J. M. Gershoni and G. E. Palade, Anal. Biochem. 124, 396 (1982).
http://dx.doi.org/10.1016/0003-2697(82)90056-2
145.
146.
146. J. G. Franchina, W. M. Lackowski, D. L. Dermody, R. M. Crooks, D. E. Bergbreiter, K. Sirkar, R. J. Russell, and M. V. Pishko, Anal. Chem. 71, 3133 (1999).
http://dx.doi.org/10.1021/ac981300q
147.
147. C. M. Roth and A. M. Lenhoff, Langmuir 9, 962 (1993).
http://dx.doi.org/10.1021/la00028a015
148.
148. Q. Lan, A. S. Bassi, J. X. J. Zhu, and A. Margaritis, Chem. Eng. J. 81, 179 (2001).
http://dx.doi.org/10.1016/S1385-8947(00)00197-2
149.
149. K. Tsougeni, P. S. Petrou, D. P. Papageorgiou, S. E. Kakabakos, A. Tserepi, and E. Gogolides, Sens. Actuators B 161, 216 (2012).
http://dx.doi.org/10.1016/j.snb.2011.10.022
150.
150. S. K. Sia, V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides, Angew. Chem., Int. Ed. 43, 498 (2004).
http://dx.doi.org/10.1002/anie.200353016
151.
151. R. Wang, Y.-L. Yang, M. Qin, L.-K. Wang, L. Yu, B. Shao, M.-Q. Qiao, C. Wang, and X.-Z. Feng, Chem. Mater. 19, 3227 (2007).
http://dx.doi.org/10.1021/cm070445n
152.
152. M. Qin, L.-K. Wang, X.-Z. Feng, Y.-L. Yang, R. Wang, C. Wang, L. Yu, B. Shao, and M.-Q. Qiao, Langmuir 23, 4465 (2007).
http://dx.doi.org/10.1021/la062744h
153.
153. D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 97, 2408 (2000).
http://dx.doi.org/10.1073/pnas.040562297
154.
154. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, Langmuir 14, 2225 (1998).
http://dx.doi.org/10.1021/la980037l
155.
155. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, J. Am. Chem. Soc. 120, 500 (1998).
http://dx.doi.org/10.1021/ja973071f
156.
156. E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, Science 276, 779 (1997).
http://dx.doi.org/10.1126/science.276.5313.779
157.
157. A. Bernard, B. Michel, and E. Delamarche, Anal. Chem. 73, 8 (2001).
http://dx.doi.org/10.1021/ac0008845
158.
158. J. Foley, H. Schmid, R. Stutz, and E. Delamarche, Langmuir 21, 11296 (2005).
http://dx.doi.org/10.1021/la0518142
159.
159. M. Starita-Geribaldi and P. Sudaka, Bioseparation 1, 111 (1990).
160.
160. Y. Lu, W. Shi, J. Qin, and B. Lin, Anal. Chem. 82, 329 (2010).
http://dx.doi.org/10.1021/ac9020193
161.
161. E. Handman and H. Jarvis, J. Immunol. Methods 83, 113 (1985).
http://dx.doi.org/10.1016/0022-1759(85)90064-X
162.
162. E. C. Peters, F. Svec, and J. Fréchet, Adv. Mater. 11, 1169 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:14<1169::AID-ADMA1169>3.0.CO;2-6
163.
163. R. B. Bhatia, C. J. Brinker, A. K. Gupta, and A. K. Singh, Chem. Mater. 12, 2434 (2000).
http://dx.doi.org/10.1021/cm000260f
164.
164. C. L. Smith, J. S. Milea, and G. H. Nguyen, in Immobilisation of DNA on Chips II (Springer, 2005), p. 63.
165.
165. S. Knecht, D. Ricklin, A. N. Eberle, and B. Ernst, J. Mol. Recogn. 22, 270 (2009).
http://dx.doi.org/10.1002/jmr.941
166.
166. R. Wacker and C. M. Niemeyer, ChemBioChem 5, 453 (2004).
http://dx.doi.org/10.1002/cbic.200300788
167.
167. G. Ramsay, Nat. Biotechnol. 16, 40 (1998).
http://dx.doi.org/10.1038/nbt0198-40
168.
168. A. Larsson, A. Karlsson-Parra, and J. Sjöquist, Clin. Chem. 37, 411 (1991).
169.
169. D. H. Bunka and P. G. Stockley, Nat. Rev. Microbiol. 4, 588 (2006).
http://dx.doi.org/10.1038/nrmicro1458
170.
170. Y. Xu, X. Yang, and E. Wang, Anal. Chim. Acta 683, 12 (2010).
http://dx.doi.org/10.1016/j.aca.2010.10.007
171.
171. R. K. Mosing and M. T. Bowser, J. Sep. Sci. 30, 1420 (2007).
http://dx.doi.org/10.1002/jssc.200600483
172.
172. B. Thierry, M. Jasieniak, L. C. de Smet, K. Vasilev, and H. J. Griesser, Langmuir 24, 10187 (2008).
http://dx.doi.org/10.1021/la801140u
173.
173. G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).
http://dx.doi.org/10.1126/science.289.5485.1760
174.
174. L. Xiong and F. E. Regnier, J. Chromatogr. A 924, 165 (2001).
http://dx.doi.org/10.1016/S0021-9673(01)00904-9
175.
175. L. Yu, C. M. Li, Q. Zhou, and J. H. Luong, Bioconjugate Chem. 18, 281 (2007).
http://dx.doi.org/10.1021/bc060108p
176.
176. D. Belder, A. Deege, H. Husmann, F. Kohler, and M. Ludwig, Electrophoresis 22, 3813 (2001).
http://dx.doi.org/10.1002/1522-2683(200109)22:17<3813::AID-ELPS3813>3.0.CO;2-D
177.
177. T. F. Didar, A. M. Foudeh, and M. Tabrizian, Anal. Chem. 84, 1012 (2012).
http://dx.doi.org/10.1021/ac2025877
178.
178. M. Hu, J. Yan, Y. He, H. Lu, L. Weng, S. Song, C. Fan, and L. Wang, ACS Nano 4, 488 (2010).
http://dx.doi.org/10.1021/nn901404h
179.
179. Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, J. Phys. Chem. B 110, 13370 (2006).
http://dx.doi.org/10.1021/jp057498h
180.
180. X. Mao, Y. Luo, Z. Dai, K. Wang, Y. Du, and B. Lin, Anal. Chem. 76, 6941 (2004).
http://dx.doi.org/10.1021/ac049270g
181.
181. B. Thierry, M. Kurkuri, J. Y. Shi, L. E. M. P. Lwin, and D. Palms, Biomicrofluidics 4, 032205 (2010).
http://dx.doi.org/10.1063/1.3480573
182.
182. S. Xie, F. Svec, and J. M. Fréchet, Biotechnol. Bioeng. 62, 30 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0290(19990105)62:1<30::AID-BIT4>3.0.CO;2-E
183.
183. C. Ericson, J.-L. Liao, K. i. Nakazato, and S. Hjertén, J. Chromatogr. A 767, 33 (1997).
http://dx.doi.org/10.1016/S0021-9673(97)00008-3
184.
184. T. Konno, J. Watanabe, and K. Ishihara, Biomacromolecules 5, 342 (2004).
http://dx.doi.org/10.1021/bm034356p
185.
185. T. Chen, H. D. Embree, L. Q. Wu, and G. F. Payne, Biopolymers 64, 292 (2002).
http://dx.doi.org/10.1002/bip.10196
186.
186. X. Luo, A. T. Lewandowski, H. Yi, G. F. Payne, R. Ghodssi, W. E. Bentley, and G. W. Rubloff, Lab Chip 8, 420 (2008).
http://dx.doi.org/10.1039/b713756g
187.
187. C. M. Niemeyer, T. Sano, C. L. Smith, and C. R. Cantor, Nucleic Acids Res. 22, 5530 (1994).
http://dx.doi.org/10.1093/nar/22.25.5530
188.
188. L. K. Fiddes, H. K. C. Chan, B. Lau, E. Kumacheva, and A. R. Wheeler, Biomaterials 31, 315 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.09.040
189.
189. E. Eteshola and D. Leckband, Sens. Actuators B 72, 129 (2001).
http://dx.doi.org/10.1016/S0925-4005(00)00640-7
190.
190. N. Stults, P. Lin, M. Hardy, Y. Lee, Y. Uchida, Y. Tsukada, and T. Sugimori, Anal. Biochem. 135, 392 (1983).
http://dx.doi.org/10.1016/0003-2697(83)90701-7
191.
191. V. Linder, E. Verpoorte, W. Thormann, N. F. de Rooij, and H. Sigrist, Anal. Chem. 73, 4181 (2001).
http://dx.doi.org/10.1021/ac010421e
192.
192. A. Mäntymaa, J. Halme, L. Välimaa, and P. Kallio, Biomicrofluidics 5, 046504 (2011).
http://dx.doi.org/10.1063/1.3668261
193.
193. J. Ylikotila, L. Välimaa, H. Takalo, and K. Pettersson, Colloids Surf., B 70, 271 (2009).
http://dx.doi.org/10.1016/j.colsurfb.2008.12.042
194.
194. A. Dodge, K. Fluri, E. Verpoorte, and N. F. de Rooij, Anal. Chem. 73, 3400 (2001).
http://dx.doi.org/10.1021/ac0015366
195.
195. H. Kaji, M. Hashimoto, and M. Nishizawa, Anal. Chem. 78, 5469 (2006).
http://dx.doi.org/10.1021/ac060304p
196.
196. M. A. Holden and P. S. Cremer, J. Am. Chem. Soc. 125, 8074 (2003).
http://dx.doi.org/10.1021/ja035390e
197.
197. M. Hashimoto, H. Kaji, and M. Nishizawa, Biosens. Bioelectron. 24, 2892 (2009).
http://dx.doi.org/10.1016/j.bios.2009.02.025
198.
198. N. Malmstadt, P. Yager, A. S. Hoffman, and P. S. Stayton, Anal. Chem. 75, 2943 (2003).
http://dx.doi.org/10.1021/ac034274r
199.
199. A. J. Qavi, A. L. Washburn, J.-Y. Byeon, and R. C. Bailey, Anal. Bioanal. Chem. 394, 121 (2009).
http://dx.doi.org/10.1007/s00216-009-2637-8
200.
200. G. MacBeath, Nat. Genet. 32, 526 (2002).
http://dx.doi.org/10.1038/ng1037
201.
201. M. A. Holden, S.-Y. Jung, and P. S. Cremer, Anal. Chem. 76, 1838 (2004).
http://dx.doi.org/10.1021/ac035234q
202.
202. C. Priest, Biomicrofluidics 4, 032206 (2010).
http://dx.doi.org/10.1063/1.3493643
203.
203. R. A. O'Neill, A. Bhamidipati, X. Bi, D. Deb-Basu, L. Cahill, J. Ferrante, E. Gentalen, M. Glazer, J. Gossett, K. Hacker, C. Kirby, J. Knittle, R. Loder, C. Mastroieni, M. MacLaren, T. Mills, U. Nguyen, N. Parker, A. Rice, D. Roach, D. Suich, D. Voehringer, K. Voss, J. Yang, T. Yang, and P. B. Vander Horn, Proc. Natl. Acad. Sci. U.S.A. 103, 16153 (2006).
http://dx.doi.org/10.1073/pnas.0607973103
204.
204. D. L. Huber, R. P. Manginell, M. A. Samara, B.-I. Kim, and B. C. Bunker, Science 301, 352 (2003).
http://dx.doi.org/10.1126/science.1080759
205.
205. S. F. Kingsmore, Nat. Rev. Drug Discovery 5, 310 (2006).
http://dx.doi.org/10.1038/nrd2006
206.
206. S. I. Stoeva, J.-S. Lee, J. E. Smith, S. T. Rosen, and C. A. Mirkin, J. Am. Chem. Soc. 128, 8378 (2006).
http://dx.doi.org/10.1021/ja0613106
207.
207. C. Boozer, J. Ladd, S. Chen, and S. Jiang, Anal. Chem. 78, 1515 (2006).
http://dx.doi.org/10.1021/ac051923l
208.
208. F. Birger Anspach, J. Chromatogr. A 672, 35 (1994).
http://dx.doi.org/10.1016/0021-9673(94)80592-X
209.
209. S. Akgöl and A. Denizli, J. Mol. Catal. B: Enzyme 28, 7 (2004).
http://dx.doi.org/10.1016/j.molcatb.2003.12.010
210.
210. D. Sung, D. H. Shin, and S. Jon, Biosens. Bioelectron. 26, 3967 (2011).
http://dx.doi.org/10.1016/j.bios.2011.03.005
211.
211. D. Sung, S. Park, and S. Jon, Langmuir 25, 11289 (2009).
http://dx.doi.org/10.1021/la902784g
212.
212. K. Sakai-Kato, M. Kato, K. Ishihara, and T. Toyo'oka, Lab Chip 4, 4 (2004).
http://dx.doi.org/10.1039/b310932a
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816934
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Role of surface geometry in binding site density. Schematic drawing of (a) planar and (b) high surface-area-to-volume ratio three-dimensional immobilization surfaces.

Image of FIG. 2.

Click to view

FIG. 2.

Common surface immobilization methods for heterogeneous assays. Schematic of immobilization mechanisms: (a) physisorption, (b) bioaffinity interaction, and (c) covalent bond. The surface immobilization methods are often used in conjunction with (d) spacer for improved protein activity.

Image of FIG. 3.

Click to view

FIG. 3.

Charged PA gel allows electrostatic immobilization of CTAB-coated proteins in a microfluidic Western blotting. Negatively charged PA gel immobilizes separated proteins, followed by fluorescent detection (immunoblotting). Reprinted with permission from D. Kim , Anal. Chem. , 2533 (2012). Copyright 2012 American Chemical Society.

Image of FIG. 4.

Click to view

FIG. 4.

Immobilization process of chicken IgG on hydrophobin coated PDMS surface and immunoassay. Reprinted with permission from R. Wang , Chem. Mater. , 3227 (2007). Copyright 2007 American Chemical Society.

Image of FIG. 5.

Click to view

FIG. 5.

Novel protein patterning methods using simple physisorption: (a) nested spirals of BSA (bright green) and fibrinogen (light green) on a PS surface using 3-D MIMIC technique. Reprinted with permission from D. T. Chiu , Proc. Natl. Acad. Sci. U.S.A. , 2408 (2000). Copyright 2000 National Academy of Science of USA. (b) Multiplexed immunoassay using μFN and reversible PDMS-to-PDMS sealing. Reprinted with permission from A. Bernard , Anal. Chem. , 8 (2001). Copyright 2001 American Chemical Society. (c) Protocol for an immunoassay in which the protein capture sites are patterned using microcontact printing and μFN. Reprinted with permission from J. Foley , Langmuir , 11296 (2005). Copyright 2005 American Chemical Society.

Image of FIG. 6.

Click to view

FIG. 6.

Process of enzyme-encapsulated sol-gel inside microchannel of PDMS functionalized by oxidation in an oxygen plasma. Reprinted with permission from H. Wu , J. Proteome Res. , 1201 (2004). Copyright 2004 American Chemical Society.

Image of FIG. 7.

Click to view

FIG. 7.

polymerized nylon membrane for an enzyme assay. (a) polymerization of nylon membrane using organic/aqueous two-phase flow in an X-shaped microfluidic chip, and (b) TLM (thermal-lens microscopy) was used to detect product and substrate. Reprinted with permission from H. Hisamoto , Anal. Chem. , 350 (2003). Copyright 2003 American Chemical Society.

Image of FIG. 8.

Click to view

FIG. 8.

Zero-powered COC immunoassay chip with patterned micropillars for covalent antibody attachment. The COC surface is oxidized in oxygen plasma and silanized with APTES. The resultant amino terminated surface is subsequently functionalized with a dextran matrix. Finally, antibody is immobilized via Schiff's base coupling to the dextran matrix. Adapted from C. Jönsson , Lab Chip , 1191 (2008) with permission from The Royal Society of Chemistry.

Image of FIG. 9.

Click to view

FIG. 9.

Pulsed plasma epoxidation of PDMS surfaces and bioconjugation of proteins. Reprinted with permission from B. Thierry , Langmuir , 10187 (2008). Copyright 2008 American Chemical Society.

Image of FIG. 10.

Click to view

FIG. 10.

PEG-grafted PDMS surface for biomolecule immobilization. (4) Preparation of the PEG-grafted PDMS microchannels and (6) amine-grafted PDMS microchannels. The amine-grafted microchannels can be activated by thiophosgene to obtain (7) the isothiocyanate-grafted PDMS microchannels as a precursor for (8) the RGD-grafted, (9) DNA-grafted, and (10) PSCA-grafted PDMS microchannels. Reprinted with permission from G. Sui , Anal. Chem. , 5543 (2006). Copyright 2006 American Chemical Society.

Image of FIG. 11.

Click to view

FIG. 11.

Structures of the five tested antibody functionalized porous silicon surfaces. Reprinted with permission from J. Yakovleva , Anal. Chem. , 2994 (2002). Copyright 2002 American Chemical Society.

Image of FIG. 12.

Click to view

FIG. 12.

Schematic illustration of the stepwise process involved in the biotin-PLL-g-PEG and protein A-based antibody immobilization. Reprinted with permission from X. Wen , J. Immunol. Methods , 97 (2009). Copyright 2009 Elsevier.

Image of FIG. 13.

Click to view

FIG. 13.

Fabrication of an r-SBM for SEB immunoassay in a PDMS microfluidic chip. (a) Streptavidin reinforced SBM, (b) surface functionalization with biotinylated anti-SEB IgG, (c) capture of SEB, and (d) SEB-antibody binding followed by incubation with fluorescently labeled secondary antibody to generate a signal. A top view of the microchannel is also shown. Reprinted with permission from Y. Dong , Lab Chip , 675 (2006). Copyright 2006 The Royal Society of Chemistry.

Image of FIG. 14.

Click to view

FIG. 14.

(a) Sequence-specificity control after immobilization of two different receptor sequences (A and B) onto the COC surface. First, Cy5-labeled oligonucleotide complementary to sequence A and afterward rabbit-IgG conjugated oligonucleotide complementary to sequence B were hybridized. Reprinted with permission from H. Wang , Electrochem. Commun. , 258 (2010). Copyright 2010 Elsevier. (b) Optical micrographs of double-line bead micropatterns and schematic illustration of the sandwich immunocomplex formation on the streptavidin-coated bead micropattern. The microchannel is filled and incubated, subsequently, with (i) biotin-labeled capture antibody, (ii) target antigen, and (iii) Cy3-labeled detection antibody, forming the sandwich immunocomplex. Reprinted with permission from V. Sivagnanam , Anal. Chem. , 6509 (2009). Copyright 2009 American Chemical Society. (c) Schematic illustration of the stepwise process involved in the TR-catalyzed protein A-based antibody immobilization. Reprinted with permission from Y. Yuan , Biotechnol. Bioeng. , 891 (2009). Copyright 2008 Wiley InterScience.

Image of FIG. 15.

Click to view

FIG. 15.

“Smart immobilization” methods for reproducible, high-sensitivity, multiplexed, high-throughput microfluidic immunoassays, or enzyme assays. (a) Photoactivated protein immobilization, (b) electrochemically activated immobilization, (c) thermally activated immobilization, (d) photoactivated protein elution, (e) spatially addressable multiplexed protein immobilization, (f) reversible protein immobilization for repetitive assay, and (g) multifunctional immobilization surface for simplified immobilization procedure.

Image of FIG. 16.

Click to view

FIG. 16.

(a) Schematic diagram of the photoimmobilization process of enzyme. (1) Passivation of the surface with a fibrinogen monolayer is followed by (2) biotin-4-fluorescein surface attachment. This is accomplished by photobleaching with a 488-nm laser. (3) Next, the binding of streptavidin-linked enzymes that can be exploited to immobilize catalysts and (4) monitor reaction processes on-chip. Reprinted with permission from M. A. Holden , Anal. Chem. , 1838 (2004). Copyright 2004 American Chemical Society. (b) Schematic diagram for the protein patterning using a silver nanoparticle film. First, an AgNO solution is introduced into the microchannel. Next, UV radiation is passed through a photomask onto the backside of the TiO thin film. Ag ions adsorbed at the interface are selectively reduced by photoelectrons, which grow into nanoparticle films. Thiol chemistry was used to immobilize streptavidin. Reprinted with permission from E. T. Castellana , Anal. Chem. , 107 (2006). Copyright 2006 American Chemical Society.

Image of FIG. 17.

Click to view

FIG. 17.

(a) Cross-linking of proteins to PDMS micropatterned with PAA. The PDMS is photopatterned with PAA. In a subsequent step, amide bonds are formed between the carboxyl groups of the PAA and amino groups of proteins. Reprinted with permission from Y. Wang , Anal. Chem. , 7539 (2005). Copyright 2005 American Chemical Society. (b) PAA-grafted PDMS for protein immobilization. (1) Native PDMS, (2) PDMS with a grafted layer of PAA, and (3) PDMS with a grafted layer of PAA that has been conjugated with FITC-casein. Reprinted with permission from L. K. Fiddes , Biomaterials , 315 (2010). Copyright 2010 Elsevier. (c) GMA photopolymerization and protein immobilization in a specific region on a glass slide using glycidyl functionalized hydrogel. Adapted from K. H. Park , Biosens. Bioelectron. , 613 (2006) with permission from Elsevier. (d) Detailed schematic of how covalently attached, photografted, antibody-containing tethers can be used to provide rapid detection of a specific antigen using a sandwich immunoassay approach. Adapted with permission from R. P. Sebra , Anal. Chem. , 3144 (2006). Copyright 2006 American Chemical Society.

Image of FIG. 18.

Click to view

FIG. 18.

(a) Design and operation of the microfluidic IEF assay. (1) Glass microfluidic device (scale bar: 2 mm), (2) the 80-min five-step assay is completed in a single microchannel, (3) schematic of microchannel cross-section depicting photoactivated protein immobilization: analytes are electrophoresed through the PA gel, exposed to UV, and covalently immobilized (scale bar: 5 m), (4) schematic of reaction between polypeptide backbone and benzophenone copolymerized in the PA gel. Ph denotes phenyl group. Reprinted from permission from A. J. Hughes and A. E. Herr, Proc. Natl. Acad. Sci. U.S.A. , 5972 (2012). Copyright 2012 National Academy of Sciences, USA. (b) Single-channel microfluidic Western blotting. The microfluidic Western blotting step is comprised of: (1) analyte stacking and SDS-PAGE within the PA gel; (2) capture of separated protein bands (“blotting”) onto the benzophenone-copolymerized PA gel under UV exposure; (3) electrophoretic introduction of fluorescently labeled detection antibodies for the target analyte; and (4) standard microscope-slide-sized chips with a scalable electrode array, accommodating 48 blots per chip in triplicate (144 microchannels). Reprinted from permission from A. J. Hughes and A. E. Herr, Proc. Natl. Acad. Sci. U.S.A. , 21450 (2012). Copyright 2012 National Academy of Sciences, USA.

Image of FIG. 19.

Click to view

FIG. 19.

Patterning two different antibody layers on the same silicon surface: (1) immobilization of mouse IgG with LMPA protection layer, (2) photoresist patterning, (3) oxygen plasma etching followed by photoresist strip, and (4) immobilization of human IgG and removal of protective LMPA pattern using GELase. Adapted with permission from W.-C. Sung , Anal. Chem. , 7967 (2009). Copyright 2009 American Chemical Society.

Image of FIG. 20.

Click to view

FIG. 20.

(a) Structures of the photo-cleavable sites on the bead. (1) Biotinylated bead with a short spacer and (2) active ester containing bead with a long spacer for aptamer coupling. (b) Schematic view of microaffinity purification process. (1) Injection of the protein mixture into the microchip packed with microbeads, (2) purification of the target protein, (3) UV irradiation, and (4) analysis of the photolytically eluted protein. Reprinted with permission from W. J. Chung , Electrophoresis , 694 (2005). Copyright 2005 Wiley InterScience.

Image of FIG. 21.

Click to view

FIG. 21.

Schematic representations of the temperature-responsive bead immunoassay system. (a) A 100 nm diameter latex nanobead is surface-conjugated with biotin–PEG and PNIPAM. Streptavidin is bound to the exposed biotin, providing binding sites for the biotinylated anti-digoxin IgG, and (b) a schematic of the experimental protocol. (1) Suspended beads are loaded into the microfluidic channel, (2) the temperature in the channel is then increased from room temperature to 37 °C, resulting in aggregation and adhesion of the beads to the channel wall, (3) flow is initiated, washing unadsorbed beads out of the channel, (4) a mixture of fluorescently labeled digoxigenin and digoxin is flowed into the channel, (5) components of this mixture that fail to bind the immobilized antibodies are washed through, and (6) finally, the temperature in the channel is reduced, and the aggregation-absorption process is reversed as antigen-bound beads leave the channel with the flow stream. Reprinted with permission from N. Malmstadt , Lab Chip , 412 (2004). Copyright 2004 The Royal Society of Chemistry.

Image of FIG. 22.

Click to view

FIG. 22.

(a) Electrochemically activated protein immobilization within a sealed microchannel. (1) Introduce a blocking agent (polyethyleneimine (PEI) and heparin) through the microchannel for antibiofouling, (2) generate HBrO local to the microelectrode, which removes a portion of blocking agent, thus making this part of the channel bottom available to protein physisorption, and (3) introduce proteins into the microchannel for immobilization. Reprinted with permission from H. Kaji , Anal. Chem. , 5469 (2006). Copyright 2006 American Chemical Society. (b) Chitosan-based electrochemically activated protein immobilization on gold electrode. (1) pH dependent protonation/deprotonation of the chitosan molecule, (2) schematic view of chitosan deposition, and (3) schematic view of chitosan deposition in a microfluidic channel. Reprinted with permission from J. J. Park , Lab Chip , 1315 (2006). Copyright 2006 The Royal Society of Chemistry.

Image of FIG. 23.

Click to view

FIG. 23.

Schematic drawing of multiplexed immunoassay performed in the wells of a disposable microarray. The different sandwich assays were assembled by site-specific DNA-directed immobilization to the dedicated capture probes cD-cG, illustrated in the scheme. Reprinted with permission from H. Schroeder , Anal. Chem. , 1275 (2009). Copyright 2009 American Chemical Society.

Image of FIG. 24.

Click to view

FIG. 24.

Process of Cu-IDA-GLYMO-MS microspheres preparation and trypsin immobilization. Reprinted with permission from Y. Li , J. Proteome Res. , 2367 (2007). Copyright 2007 American Chemical Society.

Image of FIG. 25.

Click to view

FIG. 25.

(a) Chemical structures of the multifunctional amphiphilic polymers, and (b) schematic representation of the procedure for immobilizing biomolecules onto a polymer-modified COC surface with antibiofouling properties. Reprinted with permission from D. Sung , Biosens. Bioelectron. , 3967 (2011). Copyright 2011 Elsevier.

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4816934
2013-07-30
2014-04-24

Abstract

Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4816934.html;jsessionid=164aq2pfamdbl.x-aip-live-06?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4816934&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Protein immobilization techniques for microfluidic assays
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816934
10.1063/1.4816934
SEARCH_EXPAND_ITEM