1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/4/10.1063/1.4816943
1.
1. R. Dhumpa, K. J. Handberg, P. H. Jorgensen, S. Yi, A. Wolff, and D. D. Bang, “ Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase-polymerase chain reaction assay,” Diagn. Microbiol. Infect. Dis. 69, 258265 (2011).
http://dx.doi.org/10.1016/j.diagmicrobio.2010.09.022
2.
2. A. Ambrosi, M. Guix, and A. Merkoci, “ Magnetic and electrokinetic manipulations on a microchip device for bead-based immunosensing applications,” Electrophoresis 32, 861869 (2011).
http://dx.doi.org/10.1002/elps.201000268
3.
3. S. W. Yeung and I. M. Hsing, “ Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications,” Biosens. Bioelectron. 21, 989997 (2006).
http://dx.doi.org/10.1016/j.bios.2005.03.008
4.
4. A. Gnirke, A. Melnikov, J. Maguire, P. Rogov, E. M. LeProust, W. Brockman, T. Fennell, G. Giannoukos, S. Fisher, C. Russ, S. Gabriel, D. B. Jaffe, E. S. Lander, and C. Nusbaum, “ Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing,” Nat. Biotechnol. 27, 182189 (2009).
http://dx.doi.org/10.1038/nbt.1523
5.
5. S. Peeters, T. Stakenborg, F. Colle, C. Liu, L. Lagae, and M. Van Ranst, “ Real-time PCR to study the sequence specific magnetic purification of DNA,” Biotechnol. Prog. 26, 16781684 (2010).
http://dx.doi.org/10.1002/btpr.492
6.
6. S. Cai, C. W. Lau, and J. Z. Lu, “ Sequence-specific detection of short-length DNA via template-dependent surface-hybridization events,” Anal. Chem. 82, 71787184 (2010).
http://dx.doi.org/10.1021/ac101892t
7.
7. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (John Wiley & Sons, 1990).
8.
8. R. Peytavi, L. Y. Tang, F. R. Raymond, K. Boissinot, L. Bissonnette, M. Boissinot, F. J. Picard, A. Huletsky, M. Ouellette, and M. G. Bergeron, “ Correlation between microarray DNA hybridization efficiency and the position of short capture probe on the target nucleic acid,” Biotechniques 39, 8996 (2005).
http://dx.doi.org/10.2144/05391RR01
9.
9. I. H. Hsu, W. H. Chen, T. K. Wu, and Y. C. Sun, “ Gold nanoparticle-based inductively coupled plasma mass spectrometry amplification and magnetic separation for the sensitive detection of a virus-specific RNA sequence,” J. Chromatogr. A 1218, 17951801 (2011).
http://dx.doi.org/10.1016/j.chroma.2011.02.005
10.
10. K. Y. Lien, L. Y. Hung, T. B. Huang, Y. C. Tsai, H. Y. Lei, and G. B. Lee, “ Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system,” Biosens. Bioelectron. 26, 39003907 (2011).
11.
11. C. H. Wang, K. Y. Lien, J. J. Wu, and G. B. Lee, “ A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification,” Lab Chip 11, 15211531 (2011).
http://dx.doi.org/10.1039/c0lc00430h
12.
12. S. E. McCalla, C. Ong, A. Sarma, S. M. Opal, A. W. Artenstein, and A. Tripathi, “ A simple method for amplifying RNA targets (SMART),” J. Mol. Diagn. 14, 328335 (2012).
http://dx.doi.org/10.1016/j.jmoldx.2012.02.001
13.
13. H. Bordelon, N. M. Adams, A. S. Klemm, P. K. Russ, J. V. Williams, H. K. Talbot, D. W. Wright, and F. R. Haselton, “ Development of a low-resource RNA extraction cassette based on surface tension valves,” ACS Appl. Mater. Interfaces 3, 21612168 (2011).
http://dx.doi.org/10.1021/am2004009
14.
14. R. C. den Dulk, K. A. Schmidt, G. Sabatte, S. Liebana, and M. W. Prins, “ Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins,” Lab Chip 13, 106118 (2013).
http://dx.doi.org/10.1039/c2lc40929a
15.
15. S. E. McCalla and A. Tripathi, “ Microfluidic reactors for diagnostics applications,” Annu. Rev. Biomed. Eng. 13, 321343 (2011).
http://dx.doi.org/10.1146/annurev-bioeng-070909-105312
16.
16. H. Y. Li, S. H. Park, J. H. Reif, T. H. LaBean, and H. Yan, “ DNA-templated self-assembly of protein and nanoparticle linear arrays,” J. Am. Chem. Soc. 126, 418419 (2004).
http://dx.doi.org/10.1021/ja0383367
17.
17. G. Fonnum, C. Johansson, A. Molteberg, S. Morup, and E. Aksnes, “ Characterisation of Dynabeads® by magnetization measurements and Mossbauer spectroscopy,” J. Magn. Magn. Mater. 293, 4147 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.01.041
18.
18. T. Miyatake, B. J. MacGregor, and H. T. S. Boschker, “ Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA,” Appl. Environ. Microbiol. 75, 49274935 (2009).
http://dx.doi.org/10.1128/AEM.00652-09
19.
19. V. N. Morozov, S. Groves, M. J. Turell, and C. Bailey, “ Three minutes-long electrophoretically assisted zeptornolar microfluidic immunoassay with magnetic-beads detection,” J. Am. Chem. Soc. 129, 12628 (2007).
http://dx.doi.org/10.1021/ja075069m
20.
20. Y. M. Shlyapnikov, E. A. Shlyapnikova, T. Y. Morozova, I. P. Beletsky, and V. N. Morozov, “ Detection of microarray-hybridized oligonucleotides with magnetic beads,” Anal. Biochem. 399, 125131 (2010).
http://dx.doi.org/10.1016/j.ab.2009.12.030
21.
21. C. H. Wang, K. Y. Lien, T. Y. Wang, T. Y. Chen, and G. B. Lee, “ An integrated microfluidic loop-mediated-isothermal-amplification system for rapid sample pre-treatment and detection of viruses,” Biosens. Bioelectron. 26, 20452052 (2011).
http://dx.doi.org/10.1016/j.bios.2010.08.083
22.
22. S. E. McCalla, A. L. Luryi, and A. Tripathi, “ Steric effects and mass-transfer limitations surrounding amplification reactions on immobilized long and clinically relevant DNA templates,” Langmuir 25, 61686175 (2009).
http://dx.doi.org/10.1021/la804144s
23.
23. V. A. Bloomfield, Nucleic Acids: Structures, Properties, and Functions (University Science Books, Sausalito, California, 2000).
24.
24. B. Tinland, A. Pluen, J. Sturm, and G. Weill, “ Persistence length of single-stranded DNA,” Macromolecules 30, 57635765 (1997).
http://dx.doi.org/10.1021/ma970381+
25.
25. M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, and T. J. Ha, “ Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy,” Biophys. J. 86, 25302537 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74308-8
26.
26. A. Y. L. Sim, J. Lipfert, D. Herschlag, and S. Doniach, “ Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering,” Phys. Rev. E 86, 021901 (2012).
27.
27. A. Halperin, A. Buhot, and E. B. Zhulina, “ Brush effects on DNA chips: Thermodynamics, kinetics, and design guidelines,” Biophys. J. 89, 796811 (2005).
http://dx.doi.org/10.1529/biophysj.105.063479
28.
28. P. R. Levison, S. E. Badger, J. Dennis, P. Hathi, M. J. Davies, I. J. Bruce, and D. Schimkat, “ Recent developments of magnetic beads for use in nucleic acid purification,” J. Chromatogr. A 816, 107111 (1998).
http://dx.doi.org/10.1016/S0021-9673(98)00064-8
29.
29. M. Schuster, E. Wasserbauer, C. Ortner, K. Graumann, A. Jungbauer, F. Hammerschmid, and G. Werner, “ Short cut of protein purification by integration of cell-disrupture and affinity extraction,” Bioseparation 9, 5967 (2000).
http://dx.doi.org/10.1023/A:1008135913202
30.
30. J. Jean, B. Blais, A. Darveau, and I. Fliss, “ Simultaneous detection and identification of hepatitis A virus and rotavirus by multiplex nucleic acid sequence-based amplification (NASBA) and microtiter plate hybridization system,” J. Virol. Methods 105, 123132 (2002).
http://dx.doi.org/10.1016/S0166-0934(02)00096-4
31.
31. D. J. Lockhart, H. L. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. W. Wang, M. Kobayashi, H. Horton, and E. L. Brown, “ Expression monitoring by hybridization to high-density oligonucleotide arrays,” Nat. Biotechnol. 14, 16751680 (1996).
http://dx.doi.org/10.1038/nbt1296-1675
32.
32. K. M. Millan and S. R. Mikkelsen, “ Sequence-selective biosensor for DNA-based on electroactive hybridization indicators,” Anal. Chem. 65, 23172323 (1993).
http://dx.doi.org/10.1021/ac00065a025
33.
33. V. Chan, D. J. Graves, and S. E. McKenzie, “ The biophysics of DNA hybridization with immobilized oligonucleotide probes,” Biophys. J. 69, 22432255 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80095-0
34.
34. C. L. Chen, W. J. Wang, Z. Wang, F. Wei, and X. S. Zhao, “ Influence of secondary structure on kinetics and reaction mechanism of DNA hybridization,” Nucleic Acids Res. 35, 28752884 (2007).
http://dx.doi.org/10.1093/nar/gkm177
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4816943 for characterization of microchip and nucleic acid hybridization conditions. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816943
Loading
/content/aip/journal/bmf/7/4/10.1063/1.4816943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4816943
2013-07-29
2014-12-20

Abstract

The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4816943.html;jsessionid=2d369m7rdv11s.x-aip-live-03?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4816943&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4816943
10.1063/1.4816943
SEARCH_EXPAND_ITEM