1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/7/4/10.1063/1.4817771
1.
1. K. Inoue, T. Arai, and M. Aoyagi, Biol. Pharm. Bull. 22, 210 (1999).
http://dx.doi.org/10.1248/bpb.22.210
2.
2. B. M. McDermott, Jr., A. H. Rux, R. J. Eisenberg, G. H. Cohen, and V. R. Racaniello, J. Biol. Chem. 275, 2308923096 (2000).
http://dx.doi.org/10.1074/jbc.M002146200
3.
3. L. Xing, K. Tjarnlund, B. Lindqvist, G. G. Kaplan, D. Feigelstock, R. H. Cheng, and J. M. Casasnovas, EMBO J. 19, 12071216 (2000).
http://dx.doi.org/10.1093/emboj/19.6.1207
4.
4. B. Catimel, J. Weinstock, M. Nerrie, T. Domagala, and E. Nice, J. Chromatogr. A 869, 261273 (2000).
http://dx.doi.org/10.1016/S0021-9673(99)01098-5
5.
5. S. Guermazi, V. Regnault, Y. Gorgi, K. Ayed, T. Lecompte, and K. Dellagi, Blood Coagul. Fibrinolysis 11, 491498 (2000).
http://dx.doi.org/10.1097/00001721-200007000-00012
6.
6. B. M. Charalambous and I. M. Feavers, FEMS Microbiol. Lett. 191, 4550 (2000).
http://dx.doi.org/10.1111/j.1574-6968.2000.tb09317.x
7.
7. H. Chen, A. Clayton, W. Wang, and W. Sawyer, Eur. J. Biochem. 268, 16591669 (2001).
http://dx.doi.org/10.1046/j.1432-1327.2001.02039.x
8.
8. J. L. Elliott, J. Mogridge, and R. J. Collier, Biochemistry 39, 67066713 (2000).
http://dx.doi.org/10.1021/bi000310u
9.
9. K. Uegaki, T. Otomo, H. Sakahira, M. Shimizu, N. Yumoto, Y. Kyogoku, S. Nagata, and T. Yamazaki, J. Mol. Biol. 297, 11211128 (2000).
http://dx.doi.org/10.1006/jmbi.2000.3643
10.
10. O. M. Andersen, L. L. Christensen, P. A. Christensen, E. S. Sørensen, C. Jacobsen, S. K. Moestrup, M. Etzerodt, and H. C. Thøgersen, J. Biol. Chem. 275, 2101721024 (2000).
http://dx.doi.org/10.1074/jbc.M000507200
11.
11. J. M. Holaska, B. E. Black, D. C. Love, J. A. Hanover, J. Leszyk, and B. M. Paschal, J. Cell Biol. 152, 127140 (2001).
http://dx.doi.org/10.1083/jcb.152.1.127
12.
12. M. G. Achen, S. Roufail, T. Domagala, B. Catimel, E. C. Nice, D. M. Geleick, R. Murphy, A. M. Scott, C. Caesar, and T. Makinen, Eur. J. Biochem. 267, 25052515 (2000).
http://dx.doi.org/10.1046/j.1432-1327.2000.01257.x
13.
13. T. S. Jokiranta, J. Hellwage, V. Koistinen, P. F. Zipfel, and S. Meri, J. Biol. Chem. 275(36 ), 2765727662 (2000).
http://dx.doi.org/10.1074/jbc.M002903200
14.
14. M. Vogel, S. Miescher, S. Kuhn, A. W. Zürcher, M. B. Stadler, C. Ruf, F. Effenberger, F. Kricek, and B. M. Stadler, J. Mol. Biol. 298, 729735 (2000).
http://dx.doi.org/10.1006/jmbi.2000.3713
15.
15. C. D. Ellson, S. Gobert-Gosse, K. E. Anderson, K. Davidson, H. Erdjument-Bromage, P. Tempst, J. W. Thuring, M. A. Cooper, Z.-Y. Lim, and A. B. Holmes, Nat. Cell Biol. 3, 679682 (2001).
http://dx.doi.org/10.1038/35083076
16.
16. J.-M. Gaullier, E. Rønning, D. J. Gillooly, and H. Stenmark, J. Biol. Chem. 275, 2459524600 (2000).
http://dx.doi.org/10.1074/jbc.M906554199
17.
17. V. Ablamunits, O. Henegariu, J. B. Hansen, L. Opare-Addo, P. Preston-Hurlburt, P. Santamaria, T. Mandrup-Poulsen, and K. C. Herold, Diabetes 61, 145154 (2012).
http://dx.doi.org/10.2337/db11-1033
18.
18. F. F. Bier, F. Kleinjung, and F. W. Scheller, Sens. Actuators B 38, 7882 (1997).
http://dx.doi.org/10.1016/S0925-4005(97)80174-8
19.
19. K. K. Jensen, H. Ørum, P. E. Nielsen, and B. Nordén, Biochemistry 36, 50725077 (1997).
http://dx.doi.org/10.1021/bi9627525
20.
20. K. Nakatani, S. Sando, and I. Saito, Nat. Biotechnol. 19, 5155 (2001).
http://dx.doi.org/10.1038/83505
21.
21. F. Blaesing, C. Weigel, M. Welzeck, and W. Messer, Mol. Microbiol. 36, 557569 (2002).
http://dx.doi.org/10.1046/j.1365-2958.2000.01881.x
22.
22. D. J. Hart, R. E. Speight, J. M. Blackburn, M. A. Cooper, and J. D. Sutherland, Nucleic Acids Res. 27, 10631069 (1999).
http://dx.doi.org/10.1093/nar/27.4.1063
23.
23. A. Scire, F. Tanfani, F. Saccucci, E. Bertoli, and G. Principato, Proteins: Struct., Funct., Bioinf. 41, 3339 (2000).
http://dx.doi.org/10.1002/1097-0134(20001001)41:1<33::AID-PROT60>3.0.CO;2-N
24.
24. P. Steinrücke, U. Aldinger, O. Hill, A. Hillisch, R. Basch, and S. Diekmann, Anal. Biochem. 286, 2634 (2000).
http://dx.doi.org/10.1006/abio.2000.4780
25.
25. J. Sang, H. Du, W. Wang, M. Chu, Y. Wang, H. Li, H. A. Zhang, W. Wu, and Z. Li, Biomicrofluidics 7, 024112 (2013).
http://dx.doi.org/10.1063/1.4802936
26.
26. H.-J. Koo and O. D. Velev, Biomicrofluidics 7, 031501 (2013).
http://dx.doi.org/10.1063/1.4804249
27.
27. S. Senapati, S. Basuray, Z. Slouka, L.-J. Cheng, and H.-C. Chang, in Microfluidics (Springer, 2011), pp. 153169.
28.
28. S. Basuray, S. Senapati, A. Aijian, A. R. Mahon, and H.-C. Chang, ACS Nano 3, 18231830 (2009).
http://dx.doi.org/10.1021/nn9004632
29.
29. K.-I. Chen, B.-R. Li, and Y.-T. Chen, Nano Today 6, 131154 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.02.001
30.
30. E. Katz and I. Willner, Electroanalysis 15, 913947 (2003).
http://dx.doi.org/10.1002/elan.200390114
31.
31. J. Hong, D. S. Yoon, M.-I. Park, J. Choi, T. S. Kim, G. Im, S. Kim, Y. E. Pak, and K. No, Jpn. J. Appl. Phys., Part 1 43, 56395645 (2004).
http://dx.doi.org/10.1143/JJAP.43.5639
32.
32. Y.-S. Liu, P. P. Banada, S. Bhattacharya, A. K. Bhunia, and R. Bashir, Appl. Phys. Lett. 92, 143902 (2008).
http://dx.doi.org/10.1063/1.2908203
33.
33. P. L. Hansen, R. Podgornik, and V. A. Parsegian, Phys. Rev. E 64, 021907 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.021907
34.
34. K. S. Schmitz, Macroions in Solution and Colloidal Suspension (VCH, New York, 1993).
35.
35. S. Tomić, S. D. Babić, T. Vuletić, S. Krča, D. Ivanković, L. Griparić, and R. Podgornik, Phys. Rev. E 75, 021905 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.021905
36.
36. T. E. Angelini, R. Golestanian, R. H. Coridan, J. C. Butler, A. Beraud, M. Krisch, H. Sinn, K. S. Schweizer, and G. C. Wong, Proc. Natl. Acad. Sci. U.S.A. 103, 79627967 (2006).
http://dx.doi.org/10.1073/pnas.0601435103
37.
37. F. Bordi, C. Cametti, and R. Colby, J. Phys.: Condens. Matter 16, R1423 (2004).
http://dx.doi.org/10.1088/0953-8984/16/49/R01
38.
38. G. Jungner, I. Jungner, and L. Allgen, Nature 164, 1009 (1949).
http://dx.doi.org/10.1038/1641009a0
39.
39. L. Brillouin, M. Kasha, and B. Pullman, in Horizons in Biochemistry (Academic Press, London, 1962).
40.
40. S. Suhai and J. Ladik, Int. J. Quantum Chem. 7, 547560 (1973).
http://dx.doi.org/10.1002/qua.560070310
41.
41. D. Dee and M. Baur, J. Chem. Phys. 60, 541560 (1974).
http://dx.doi.org/10.1063/1.1681073
42.
42. C. Murphy, M. Arkin, Y. Jenkins, N. Ghatlia, S. Bossmann, N. Turro, and J. Barton, Science 262, 10251029 (1993).
http://dx.doi.org/10.1126/science.7802858
43.
43. S. Priyadarshy, S. Risser, and D. Beratan, J. Phys. Chem. 100, 1767817682 (1996).
http://dx.doi.org/10.1021/jp961731h
44.
44. S. M. Risser, D. N. Beratan, and T. J. Meade, J. Am. Chem. Soc. 115, 25082510 (1993).
http://dx.doi.org/10.1021/ja00059a057
45.
45. R. Williams, Mol. Phys. 68, 123 (1989).
http://dx.doi.org/10.1080/00268978900101931
46.
46. K. Baverstock and R. Cundall, Int. J. Rad Appl. Instrum. C 32(3 ), 553556 (1988).
http://dx.doi.org/10.1016/1359-0197(88)90063-X
47.
47. M. Arkin, E. Stemp, R. Holmlin, J. Barton, A. Hörmann, E. Olson, and P. Barbara, Science (New York, NY) 273, 475 (1996).
http://dx.doi.org/10.1126/science.273.5274.475
48.
48. R. E. Holmlin, E. D. Stemp, and J. K. Barton, J. Am. Chem. Soc. 118, 52365244 (1996).
http://dx.doi.org/10.1021/ja953941y
49.
49. S. O. Kelley and J. K. Barton, Chem. Biol. 5, 413425 (1998).
http://dx.doi.org/10.1016/S1074-5521(98)90158-2
50.
50. S. O. Kelley, R. E. Holmlin, E. D. Stemp, and J. K. Barton, J. Am. Chem. Soc. 119, 98619870 (1997).
http://dx.doi.org/10.1021/ja9714651
51.
51. A. Bakhshi, Prog. Biophys. Mol. Biol. 61, 187 (1994).
http://dx.doi.org/10.1016/0079-6107(94)90001-9
52.
52. D. N. Beratan, J. Am. Chem. Soc 108, 43214326 (1986).
http://dx.doi.org/10.1021/ja00275a014
53.
53. R. Esfandyarpour, H. Esfandyarpour, M. Javanmard, J. S. Harris, and R. W. Davis, “ Microneedle biosensor: A method for direct label-free real time protein detection,” Sens. Actuators B: Chem. 177, 848855 (2012).
http://dx.doi.org/10.1016/j.snb.2012.11.064
54.
54. R. Esfandyarpour, H. Esfandyarpour, M. Javanmard, J. S. Harris, and R. W. Davis, Electrical Detection of Protein Biomarkers Using Nanoneedle Biosensors (Cambridge University Press, 2012).
55.
55. R. Esfandyarpour, M. Javanmard, J. S. Harris, and R. W. Davis, Thin Film Nanoelectronic Probe for Protein Detection (Cambridge Univ Press, 2013).
56.
56. R. Esfandyarpour, M. Javanmard, Z. Koochak, J. S. Harris, and R. W. Davis, “ Nanoelectronic impedance detection of target cells,” Biotechnol. Bioeng. (in press).
57.
57. R. Esfandyarpour, H. Esfandyarpour, J. S. Harris, and R. W. Davis, “ Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device,” Nanotechnology (in press).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4817771
Loading
/content/aip/journal/bmf/7/4/10.1063/1.4817771
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4817771
2013-08-06
2015-03-27

Abstract

Detection of proteins and nucleic acids is dominantly performed using optical fluorescence based techniques, which are more costly and timely than electrical detection due to the need for expensive and bulky optical equipment and the process of fluorescent tagging. In this paper, we discuss our study of the electrical properties of nucleic acids and proteins at the nanoscale using a nanoelectronic probe we have developed, which we refer to as the Nanoneedle biosensor. The nanoneedle consists of four thin film layers: a conductive layer at the bottom acting as an electrode, an oxide layer on top, and another conductive layer on top of that, with a protective oxide above. The presence of proteins and nucleic acids near the tip results in a decrease in impedance across the sensing electrodes. There are three basic mechanisms behind the electrical response of DNA and protein molecules in solution under an applied alternating electrical field. The first change stems from modulation of the relative permittivity at the interface. The second mechanism is the formation and relaxation of the induced dipole moment. The third mechanism is the tunneling of electrons through the biomolecules. The results presented in this paper can be extended to develop low cost point-of-care diagnostic assays for the clinical setting.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4817771.html;jsessionid=19ggfk1d4krd.x-aip-live-06?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4817771&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4817771
10.1063/1.4817771
SEARCH_EXPAND_ITEM