1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/4/10.1063/1.4818907
1.
1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, GLOBOCAN 2008 v2.0 - Cancer Incidence and Mortality Worldwide, International Agency for Research on Cancer, February 2012, Fact Sheet No. 297, http://globocan.iarc.fr (accessed on 30/01/13).
2.
2. P. S. Steeg, Nat. Med. 12(8), 895904 (2006).
http://dx.doi.org/10.1038/nm1469
3.
3. M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, J. Cell Biol. 192(3), 373382 (2011).
http://dx.doi.org/10.1083/jcb.201010021
4.
4. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, Nature 450(20), 12351239 (2007).
http://dx.doi.org/10.1038/nature06385
5.
5. J. B. Smerage and D. F. Hayes, Br. J. Cancer 94, 812 (2006).
http://dx.doi.org/10.1038/sj.bjc.6602871
6.
6. S. Mocellin, D. Hoon, A. Ambrosi, D. Nitti, and C. R. Rossi, Clin. Cancer Res. 12, 46054613 (2006).
http://dx.doi.org/10.1158/1078-0432.CCR-06-0823
7.
7. J. Chen, J. Li, and Y. Sun, Lab Chip 12, 17531767 (2012).
http://dx.doi.org/10.1039/c2lc21273k
8.
8. M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. M. M. Terstappen, and D. F. Hayes, N. Engl. J. Med. 351, 781791 (2004).
http://dx.doi.org/10.1056/NEJMoa040766
9.
9. P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, and T. Laurell, Anal. Chem. 84, 79547962 (2012).
http://dx.doi.org/10.1021/ac301723s
10.
10. P. Li, Z. S. Stratton, M. Dao, J. Ritz, and T. J. Huang, Lab Chip 13, 602609 (2013).
http://dx.doi.org/10.1039/C2LC90148J
11.
11. T. A. Franke and A. Wixforth, ChemPhysChem 9, 21402156 (2008).
http://dx.doi.org/10.1002/cphc.200800349
12.
12. A. Karimi, S. Yazdi, and A. M. Ardekani, Biomicrofluidics 7(2), 021501 (2013).
http://dx.doi.org/10.1063/1.4799787
13.
13. X. Mu, W. Zheng, J. Sun, W. Zhang, and X. Jiang, Small 9, 921 (2013).
http://dx.doi.org/10.1002/smll.201200996
14.
14. I. Cima, C. W. Yee, F. S. Iliescu, W. M. Phyo, K. H. Lim, C. Iliescu, and M. H. Tan, Biomicrofluidics 7(1), 011810 (2013).
http://dx.doi.org/10.1063/1.4780062
15.
15. M. P. Hughes, Electrophoresis 23, 25692582 (2002).
http://dx.doi.org/10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M
16.
16. S. Shim, K. Stemke-Hale, A. M. Tsimberidou, J. Noshari, T. E. Anderson, and P. R. C. Gascoyne, Biomicrofluidics 7(1), 011807 (2013).
http://dx.doi.org/10.1063/1.4774304
17.
17. P. Thévoz, J. D. Adams, H. Shea, H. Bruus, and H. T. Soh, Anal. Chem. 82, 30943098 (2010).
http://dx.doi.org/10.1021/ac100357u
18.
18. K. Loutherback, J. D'Silva, L. Liu, A. Wu, R. H. Austin, and J. C. Sturm, AIP Adv. 2(4), 042107 (2012).
http://dx.doi.org/10.1063/1.4758131
19.
19. V. Parichehreh, K. Medepallai, K. Babbarwal, and P. Sethu, Lab Chip 13, 892900 (2013).
http://dx.doi.org/10.1039/c2lc40663b
20.
20. D. di Carlo, D. Irmia, R. G. Tompkins, and M. Toner, Proc. Natl. Acad. Sci. U.S.A. 104, 18892 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
21.
21. T. Tanaka, T. Ishikawa, K. Numayama-Tsuruta, Y. Imai, H. Ueno, N. Matsuki, and T. Yamaguchi, Lab Chip 12, 43364343 (2012).
http://dx.doi.org/10.1039/c2lc40354d
22.
22. S. C. Hur, A. J. Mach, and D. Di Carlo, Biomicrofluidics 5(2), 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
23.
23. N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, Europhys. Lett. 83, 24002 (2008).
http://dx.doi.org/10.1209/0295-5075/83/24002
24.
24. M. Abkarian, C. Lartigue, and A. Viallat, Phys. Rev. Lett. 88(6), 068103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.068103
25.
25. A. Lamura and G. Gompper, Europhys. Lett. 102, 28004 (2013).
http://dx.doi.org/10.1209/0295-5075/102/28004
26.
26. P. Olla, J. Phys. II 7, 1533 (1997).
http://dx.doi.org/10.1051/jp2:1997201
27.
27. M. Faivre, M. Abkarian, K. Bickraj, H. A. Stone, Biorheology 43(2), 147159 (2006).
28.
28. U. Seifert, Phys. Rev. Lett. 83(4), 876879 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.876
29.
29. H. L. Goldsmith and S. G. Mason, J. Colloid Sci. 17, 448476 (1962).
http://dx.doi.org/10.1016/0095-8522(62)90056-9
30.
30. G. N. P. van Muijen, K. F. J. Jansen, I. M. H. A. Cornelissen, D. F. C. M. Smeets, J. L. M. Beck, and D. J. Ruiter, Int. J. Cancer 48, 8591 (1991).
http://dx.doi.org/10.1002/ijc.2910480116
31.
31. P. Olla, Phys. Rev. Lett. 82, 453 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.453
32.
32. C. A. Stan, A. K. Ellerbee, L. Guglielmini, H. A. Stone, and G. M. Whitesides, Lab Chip 13, 365376 (2013).
http://dx.doi.org/10.1039/c2lc41035d
33.
33. A. Farutin and C. Misbah, Phys. Rev. Lett. 110(10), 108104 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108104
34.
34. R. Zhou and H.-C. Chang, J. Colloid Interface Sci. 287, 647656 (2005).
http://dx.doi.org/10.1016/j.jcis.2005.02.023
35.
35. R. Zhou, J. Gordon, A. F. Palmer, H.-C. Chang, Biotechnol. Bioeng. 93(2), 201211 (2006).
http://dx.doi.org/10.1002/bit.20672
36.
36. R. Fahraeus and T. Lindqvist, Am. J. Physiol. 96(3), 562568 (1931).
37.
37. H. L. Goldsmith and S. Spain, Microvasc Res. 27(2), 204222 (1984).
http://dx.doi.org/10.1016/0026-2862(84)90054-2
38.
38. H. Zhao, E. S. G. Shaqfeh, and V. Narsimhan, Phys. Fluids 24(1), 011902 (2012).
http://dx.doi.org/10.1063/1.3677935
39.
39. T. M. Geislinger, B. Eggart, S. Braunmüller, L. Schmid, and T. Franke, Appl. Phys. Lett. 100, 183701 (2012).
http://dx.doi.org/10.1063/1.4709614
40.
40. M. Abkarian and A. Viallat, Biophys. J. 89, 10551066 (2005).
http://dx.doi.org/10.1529/biophysj.104.056036
41.
41. M. Abkarian and A. Viallat, Soft Matter 4, 653657 (2008).
http://dx.doi.org/10.1039/b716612e
42.
42. G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, Phys. Fluids 20, 111702 (2008).
http://dx.doi.org/10.1063/1.3023159
43.
43. G. Danker, P. M. Vlahovska, and C. Misbah, Phys. Rev. Lett. 102, 148102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.148102
44.
44. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153184 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
45.
45. B. Kaoui, T. Krüger, and J. Harting, Soft Matter 8, 9246 (2012).
http://dx.doi.org/10.1039/c2sm26289d
46.
46. C.-H. Lin, C.-Y. Lee, C.-H. Tsai, and L.-M. Fu, Microfluid. Nanofluid. 7, 499508 (2009).
http://dx.doi.org/10.1007/s10404-009-0403-z
47.
47. V. Kantsler and V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.258101
48.
48. T. M. Fischer, M. Stohr-Lissen, and H. Schmid-Schonbein, Science 202(4370), 894896 (1978).
http://dx.doi.org/10.1126/science.715448
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4818907
Loading
/content/aip/journal/bmf/7/4/10.1063/1.4818907
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4818907
2013-08-21
2014-07-25

Abstract

We demonstrate the method of non-inertial lift induced cell sorting (NILICS), a continuous, passive, and label-free cell sorting approach in a simple single layer microfluidic device at low Reynolds number flow conditions. In the experiments, we exploit the non-inertial lift effect to sort circulating MV3-melanoma cells from red blood cell suspensions at different hematocrits as high as 9%. We analyze the separation process and the influence of hematocrit and volume flow rates. We achieve sorting efficiencies for MV3-cells up to E = 100% at Hct = 9% and demonstrate cell viability by recultivation of the sorted cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4818907.html;jsessionid=2b3g0ifhcgeuu.x-aip-live-03?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4818907&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4818907
10.1063/1.4818907
SEARCH_EXPAND_ITEM