1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/4/10.1063/1.4819747
1.
1. A. A. Adebiyi, M. E. Taslim, and K. D. Crawford, Biomaterials 32, 8753 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.08.028
2.
2. S. N. Jayasinghe, P. A. Eagles, and A. N. Qureshi, Biotechnol. J. 1, 86 (2006).
http://dx.doi.org/10.1002/biot.200500025
3.
3. N. Mongkoldhumrongkul, J. M. Flanagan, and S. N. Jayasinghe, Biomed. Mater. 4, 015018 (2009).
http://dx.doi.org/10.1088/1748-6041/4/1/015018
4.
4. P. A. M. Eagles, A. N. Qureshi, and S. N. Jayasinghe, Biochem. J. 394, 375 (2006).
http://dx.doi.org/10.1042/BJ20051838
5.
5. J. J. Stankus, J. Guan, K. Fujimoto, and W. R. Wagner, Biomaterials 27, 735 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.06.020
6.
6. J. J. Stankus, L. Soletti, K. Fujimoto, Y. Hong, D. A. Vorp, and W. R. Wagner, Biomaterials 28, 2738 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.02.012
7.
7. S. Sahoo, W. C. Lee, J. C. Goh, and S. L. Toh, Biotechnol. Bioeng. 106, 690 (2010).
http://dx.doi.org/10.1002/bit.22734
8.
8. R. P. Hall, C. M. Ogilvie, E. Aarons, and S. N. Jayasinghe, Analyst 133, 1347 (2008).
http://dx.doi.org/10.1039/b806901h
9.
9. A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, Integr. Biol. (Camb) 1, 260 (2009).
http://dx.doi.org/10.1039/b819889f
10.
10. P. Joly, B. H. Jennings, and S. N. Jayasinghe, Biomicrofluidics 3, 044107 (2009).
http://dx.doi.org/10.1063/1.3267044
11.
11. L. Bernardi, S. B. Luisi, R. Fernandes et al., J. Endod. 37, 973 (2011).
http://dx.doi.org/10.1016/j.joen.2011.04.010
12.
12. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, J. Cell Sci. 119, 2204 (2006).
http://dx.doi.org/10.1242/jcs.02932
13.
13. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, Exp. Cell Res. 175, 184 (1988).
http://dx.doi.org/10.1016/0014-4827(88)90265-0
14.
14. A. R. Collins, Mol. Biotechnol. 26, 249 (2004).
http://dx.doi.org/10.1385/MB:26:3:249
15.
15. A. Hartmann and G. Speit, Toxicol. Lett. 90, 183 (1997).
http://dx.doi.org/10.1016/S0378-4274(96)03847-7
16.
16. S. B. Nadin, L. M. Vargas-Roig, and D. R. Ciocca, J. Histochem. Cytochem. 49, 1183 (2001).
http://dx.doi.org/10.1177/002215540104900912
17.
17. R. R. Tice, E. Agurell, D. Anderson et al., Environ. Mol. Mutagen 35, 206 (2000).
http://dx.doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
18.
18. W. Chen, Y. Han, Y. Chen, and J. T. Xie, Bioelectrochem. Bioenerg. 47, 237 (1998).
http://dx.doi.org/10.1016/S0302-4598(98)00194-9
19.
19. J. R. J. Paletta, F. Mack, H. Schenderlein et al., Eur. Cell Mater. 21, 384395 (2011), available at http://www.ecmjournal.org/journal/papers/vol021/vol021a29.php.
20.
20. S. N. Jayasinghe and A. Townsend-Nicholson, Lab Chip 6, 1086 (2006).
http://dx.doi.org/10.1039/b606508m
21.
21. A. R. Collins, A. A. Oscoz, G. Brunborg et al., Mutagenesis 23, 143 (2008).
http://dx.doi.org/10.1093/mutage/gem051
22.
22. O. G. Vijayalaxmi, Bioelectromagnetics 26, 412 (2005).
http://dx.doi.org/10.1002/bem.20111
23.
23. T. Paz-Elizur, Z. Sevilya, Y. Leitner-Dagan, D. Elinger, L. C. Roisman, and Z. Livneh, Cancer Lett. 266, 60 (2008).
http://dx.doi.org/10.1016/j.canlet.2008.02.032
24.
24. V. J. McKelvey-Martin, M. H. Green, P. Schmezer, B. L. Pool-Zobel, M. P. De Meo, and A. Collins, Mutat. Res. 288, 47 (1993).
http://dx.doi.org/10.1016/0027-5107(93)90207-V
25.
25. R. Fuchs, I. Stelzer, C. M. Drees et al., Cell Biol. Int. 36, 113 (2012).
http://dx.doi.org/10.1042/CBI20110251
26.
26. M. Ghaderi, A. Allameh, M. Soleimani, H. Rastegar, and H. R. Ahmadi-Ashtiani, Mutat. Res. 719, 14 (2011).
http://dx.doi.org/10.1016/j.mrgentox.2010.09.005
27.
27. A. P. F. Lambert, D. Moura, A. F. Zandonai et al., J. Tissue Sci. Eng. 2, 109 (2011).
http://dx.doi.org/10.4172/2157-7552.1000109
28.
28. S. Hackenberg, A. Scherzed, M. Kessler et al., Toxicol. Lett. 201, 27 (2011).
http://dx.doi.org/10.1016/j.toxlet.2010.12.001
29.
29. A. Eddaoudi, A. Townsend-Nicholson, J. F. Timms, S. Schorge, and S. N. Jayasinghe, Analyst 135, 2600 (2010).
http://dx.doi.org/10.1039/c0an00213e
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4819747
Loading
/content/aip/journal/bmf/7/4/10.1063/1.4819747
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/4/10.1063/1.4819747
2013-08-29
2015-01-27

Abstract

Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/4/1.4819747.html;jsessionid=2d2p10daktbkb.x-aip-live-03?itemId=/content/aip/journal/bmf/7/4/10.1063/1.4819747&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/4/10.1063/1.4819747
10.1063/1.4819747
SEARCH_EXPAND_ITEM