1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
All-aqueous multiphase microfluidics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/6/10.1063/1.4827916
1.
1. A. D. Diamond and J. T. Hsu, Adv. Biochem. Eng./Biotechnol. 47, 89135 (1992).
http://dx.doi.org/10.1007/BFb0046198
2.
2. R. Hatti-Kaul, Mol. Biotechnol. 19, 269277 (2001).
http://dx.doi.org/10.1385/MB:19:3:269
3.
3. A. D. Diamond and J. T. Hsu, Biotechnol. Tech. 3, 119124 (1989).
http://dx.doi.org/10.1007/BF01875564
4.
4. C. K. Su and B. H. Chiang, Process Biochem. 41, 257263 (2006).
http://dx.doi.org/10.1016/j.procbio.2005.06.026
5.
5. R. S. King, H. W. Blanch, and J. M. Prausnitz, AIChE J. 34, 15851594 (1988).
http://dx.doi.org/10.1002/aic.690341002
6.
6. D. M. Brunette and J. E. Till, J. Membr. Biol. 5, 215224 (1971).
http://dx.doi.org/10.1007/BF01870550
7.
7. A. D. Diamond and J. T. Hsu, AIChE J. 36, 10171024 (1990).
http://dx.doi.org/10.1002/aic.690360707
8.
8. F. Y. Hsu, S. Chueh, and Y. J. Wang, Biomaterials 20, 19311936 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00095-2
9.
9. M. van de Weert, J. Hoechstetter, W. E. Hennink, and D. J. A. Crommelin, J. Control. Release 68, 351359 (2000).
http://dx.doi.org/10.1016/S0168-3659(00)00277-7
10.
10. B. Sivasankar, Bioseparations: Principles and Techniques (Prentice-Hall of India Private Limited, New Delhi, 2006).
11.
11. R. J. H. Stenekes, O. Franssen, E. M. G. van Bommel, D. J. A. Crommelin, and W. E. Hennink, Int. J. Pharm. 183, 2932 (1999).
http://dx.doi.org/10.1016/S0378-5173(99)00038-1
12.
12. Y. A. Antonov, P. V. Puyvelde, P. Moldenaers, and K. U. Leuven, Biomacromolecules 5, 276283 (2004).
http://dx.doi.org/10.1021/bm0300352
13.
13. S. Hardt and T. Hahn, Lab Chip 12, 434442 (2012).
http://dx.doi.org/10.1039/c1lc20569b
14.
14. K. Vijayakumar, S. Gulati, A. J. deMello, and J. B. Edel, Chem. Sci. 1, 447452 (2010).
http://dx.doi.org/10.1039/c0sc00229a
15.
15. H. C. Shum, J. Varnell, and D. A. Weitz, Biomicrofluidics 6, 012808 (2012).
http://dx.doi.org/10.1063/1.3670365
16.
16. T. Hahn and S. Hardt, Soft Matter 7, 63206327 (2011).
http://dx.doi.org/10.1039/c1sm05309d
17.
17. T. Hahn and S. Hardt, Anal. Chem. 83, 54765479 (2011).
http://dx.doi.org/10.1021/ac201228v
18.
18. R. J. Meagher, Y. K. Light, and A. K. Singh, Lab Chip 8, 527532 (2008).
http://dx.doi.org/10.1039/b716462a
19.
19. G. Münchow, S. Hardt, J. P. Kutter, and K. S. Drese, Lab Chip 7, 98102 (2007).
http://dx.doi.org/10.1039/b612669n
20.
20. K. H. Nam, W. J. Chang, H. Hong, S. M. Lim, D. I. Kim, and Y. M. Koo, Biomed. Microdevices 7, 189195 (2005).
http://dx.doi.org/10.1007/s10544-005-3025-6
21.
21. Y. Wu, Z. Zhu, and L. Mei, J. Chem, Eng. Data 41, 10321035 (1996).
http://dx.doi.org/10.1021/je960044g
22.
22. D. Forciniti, C. K. Hall, and M. R. Kula, J. Biotechnol. 16, 279296 (1990).
http://dx.doi.org/10.1016/0168-1656(90)90042-A
23.
23. A. D. Giraldo-Zuniga, J. S. R. Coimbra, D. A. Arquete, L. A. Minim, L. H. M. Silva, and M. Cristina Maffia, J. Chem. Eng. Data 51, 11441147 (2006).
http://dx.doi.org/10.1021/je0600348
24.
24. P. Ding, B. Wolf, W. J. Frith, A. H. Clark, I. T. Norton, and A. W. Pacek. J. Colloid Interface Sci. 253, 367376 (2002).
http://dx.doi.org/10.1006/jcis.2002.8572
25.
25. M. Simeone, A. Alfani, and S. Guido, Food Hydrocolloids 18, 463470 (2004).
http://dx.doi.org/10.1016/j.foodhyd.2003.08.004
26.
26. Y. Lu, Y. Xia, and G. Luo. Microfluid Nanofluid 10, 10791086 (2011).
http://dx.doi.org/10.1007/s10404-010-0736-7
27.
27. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/3/036601
28.
28. A. Sauret, C. Spandagos, and H. C. Shum, Lab Chip 12, 33803386 (2012).
http://dx.doi.org/10.1039/c2lc40524e
29.
29. I. Ziemecka, V. V. Steijn, G. J. M. Koper, M. T. Kreutzer, and J. H. van Esch, Soft Matter 7, 98789880 (2011).
http://dx.doi.org/10.1039/c1sm06517c
30.
30. T. Cubaud and T. G. Mason, Soft Matter 8, 1057310582 (2012).
http://dx.doi.org/10.1039/c2sm25902h
31.
31. Y. Song, Z. Liu, T. T. Kong, and H. C. Shum, Chem. Commun. 49, 17261728 (2013).
http://dx.doi.org/10.1039/c3cc38094g
32.
32. T. Cubaud and T. G. Mason, Phys. Rev. Lett. 96, 114501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.114501
33.
33. R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L. Y. Chu, J. W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Mater. Today 11, 1827 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70053-1
34.
34. I. Ziemecka, V. V. Steijn, G. J. M. Koper, and M. Rosso, Lab Chip 11, 620624 (2011).
http://dx.doi.org/10.1039/c0lc00375a
35.
35. A. Bransky, N. Korin, M. Khoury, and S. Levenberg, Lab Chip 9, 516520 (2009).
http://dx.doi.org/10.1039/b814810d
36.
36. A. Sauret and H. C. Shum, Appl. Phys. Lett. 100, 154106 (2012).
http://dx.doi.org/10.1063/1.3702434
37.
37. Y. Song and H. C. Shum, Langmuir 28, 1205412059 (2012).
http://dx.doi.org/10.1021/la3026599
38.
38. S. D. Geschiere, I. Ziemecka, V. V. Steijn, G. J. M. Koper, J. H. van Esch, and M. T. Kreutzer, Biomicrofluidics 6, 022007 (2012).
http://dx.doi.org/10.1063/1.3700117
39.
39. J. B. Boreyko, P. Mruetusatom, S. T. Retterer, and C. P. Collier. Lab Chip 13, 12951301 (2013).
http://dx.doi.org/10.1039/c3lc41122b
40.
40. M. S. Long, C. D. Jones, M. R. Helfrich, L. K. Mangeney-Slavin, and C. D. Keating, Proc. Natl. Acad. Sci. 102, 59205925 (2005).
http://dx.doi.org/10.1073/pnas.0409333102
41.
41. Y. S. Song, Y. H. Choi, and D. H. Kim, J. Chromatogr. A 1162, 180186 (2007).
http://dx.doi.org/10.1016/j.chroma.2007.06.032
42.
42. C. Y. Lee, C. L. Chang, Y. N. Wang, and L. M. Fu, Int. J. Mol. Sci. 12, 32633287 (2011).
http://dx.doi.org/10.3390/ijms12053263
43.
43. K. Tang and A. Gomez, J. Aerosol Sci. 25, 12371249 (1994).
http://dx.doi.org/10.1016/0021-8502(94)90212-7
44.
44. A. Jaworek, J. Microencapsulation 25, 443468 (2008).
http://dx.doi.org/10.1080/02652040802049109
45.
45. W. Deng, J. M. Klemic, X. Li, M. A. Reed, and A. Gomez, J. Aerosol Sci. 37, 696714 (2006).
http://dx.doi.org/10.1016/j.jaerosci.2005.05.011
46.
46. H. Chen, Y. Zhao, Y. Song, and L. Jiang, J. Am. Chem. Soc. 130, 78007801 (2008).
http://dx.doi.org/10.1021/ja801803x
47.
47.See supplementary material at http://dx.doi.org/10.1063/1.4827916 for the feasibility to produce droplets with tunable sizes and structures through the all-aqueous electrospray technique. [Supplementary Material]
48.
48. M. Ma, A. Chiu, G. Sahay, J. C. Doloff, N. Dholakia, R. Thakrar, J. Cochen, A. Vegas, D. Chen, K. M. Bratlie, T. Dang, R. L. York, J. Hollister-Lock, G. C. Weir, and D. G. Anderson, Adv. Healthcare Mater. 2, 768 (2013).
http://dx.doi.org/10.1002/adhm.201370026
49.
49. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, J. Am. Soc. 134, 49834989 (2012).
http://dx.doi.org/10.1021/ja300460p
50.
50. B. Z. Li, L. J. Wang, and D. Li, Carbohydr. Polym. 88, 912916 (2012).
http://dx.doi.org/10.1016/j.carbpol.2012.01.043
51.
51. W. H. Tan and S. Takeuchi, Adv. Mater. 19, 26962701 (2007).
http://dx.doi.org/10.1002/adma.200700433
52.
52. P. Chr. Lorenzen, Food Res. Int. 40, 700708 (2007).
http://dx.doi.org/10.1016/j.foodres.2006.12.001
53.
53. G. Balakrishnan, T. Nicolai, L. Benyahia, and D. Durand, Langmuir 28, 59215926 (2012).
http://dx.doi.org/10.1021/la204825f
54.
54. B. T. Nguyen, T. Nicolai, and L. Benyahia, Langmuir 29, 1065810664 (2013).
http://dx.doi.org/10.1021/la402131e
55.
55. A. S. Cans, M. Andes-Koback, and C. D. Keating, J. Am. Chem. Soc. 130, 74007406 (2008).
http://dx.doi.org/10.1021/ja710746d
56.
56. M. Andes-Koback and C. D. Keating, J. Am. Chem. Soc. 133, 95459555 (2011).
http://dx.doi.org/10.1021/ja202406v
57.
57. Y. Zhang, F. Wu, W. Yuan, and T. Jin, J. Controlled Release 147, 413419 (2010).
http://dx.doi.org/10.1016/j.jconrel.2010.07.121
58.
58. K. A. Simon, P. Sejwal, R. B. Gerecht, and Y. Y. Luk, Langmuir 23, 14531458 (2006).
http://dx.doi.org/10.1021/la062203s
59.
59. L. H. M. Silva, M. C. H. Silva, R. C. Sousa, J. P. Martins, G. D. Rodrigues, J. S. R. Coimbra, and L. A. Minim, J. Chem. Eng. Data 54, 531535 (2009).
http://dx.doi.org/10.1021/je800494r
60.
60. J. A. Pojman, C. Whitmore, M. L. Turco Liveri, R. Lombardo, J. Marszalek, R. Parker, and B. Zoltowski, Langmuir 22, 25692577 (2006).
http://dx.doi.org/10.1021/la052111n
61.
61. B. Zoltowski, Y. Chekanov, M. Jonathan, J. A. Pojamn, and V. Volpert. Langmuir 23, 55225531 (2007).
http://dx.doi.org/10.1021/la063382g
62.
62. J. W. Hong, J. H. Park, K. M Huh, H. Chung, I. C. Kwon, and S. Y. Jeong. J. Controlled Release 99, 167176 (2004).
http://dx.doi.org/10.1016/j.jconrel.2004.05.012
63.
63. M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, Ann. Biomed. Eng. 37, 19221933 (2009).
http://dx.doi.org/10.1007/s10439-009-9643-z
64.
64. S.-H. Kim, H. C. Shum, J. W. Kim, J.-C. Cho, and D. A. Weitz, J. Am. Chem. Soc. 133, 1516515171 (2011).
http://dx.doi.org/10.1021/ja205687k
65.
65. J. Wu, T. Kong, K. W. K. Yeung, H. C. Shum, K. M. C. Cheung, L. Wang, and M. K. T. To, Acta Biomater. 9, 74107419 (2013).
http://dx.doi.org/10.1016/j.actbio.2013.03.022
66.
66. H. C. Shum, Y.-J. Zhao, S.-H. Kim, and D. A. Weitz, Angew. Chem. 123, 16861689 (2011).
http://dx.doi.org/10.1002/ange.201006023
67.
67. J. V. M. Weaver, S. P. Rannard, and A. I. Cooper. Angew. Chem. Int. Ed. 48, 21312134 (2009).
http://dx.doi.org/10.1002/anie.200805448
68.
68. I. Pulko, V. Smrekar, A. Podgornik, and P. Krajnc, J. Chromatogr. A 1218, 23962401 (2011).
http://dx.doi.org/10.1016/j.chroma.2010.11.069
69.
69. H. Zhang, G. C. Hardy, Y. Z. Khimyak, M. J. Rosseinsky, and A. I. Cooper, Chem. Mater. 16, 42454256 (2004).
http://dx.doi.org/10.1021/cm0492944
70.
70. G. Villar, A. D. Graham, and H. Bayley, Science 340, 4852 (2013).
http://dx.doi.org/10.1126/science.1229495
71.
71. A. Imhof and D. J. Pine, Nature 389, 948951 (1997).
http://dx.doi.org/10.1038/40105
72.
72. N. G. Durmus, S. Tasoglu, and U. Demirci, Nature Mater. 12, 478479 (2013).
http://dx.doi.org/10.1038/nmat3665
73.
73. A. C. Hatch, J. S. Fisher, S. L. Pentoney, D. L. Yang, and A. P. Lee, Lab Chip 11, 25092517, (2011).
http://dx.doi.org/10.1039/c0lc00553c
74.
74. S. H. S. Lee, M. K. Dawood, W. K. Choi, T. A. Hatton, and S. A. Khan, Soft Matter 8, 39243928 (2012).
http://dx.doi.org/10.1039/c2sm07373k
75.
75. C. D. Keating, Acc. Chem. Res. 45, 21142124 (2012).
http://dx.doi.org/10.1021/ar200294y
76.
76. C. P. Brangwynne. C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Julicher, and A. A. Hyman, Science 324, 17291732 (2009).
http://dx.doi.org/10.1126/science.1172046
77.
77. C. A. Ku, J. D. Henry, and J. B. Blair, Biotechnol. Bioeng. 33, 10811088 (1989).
http://dx.doi.org/10.1002/bit.260330902
78.
78. D. N. Cacace and C. D. Keating, J. Mater. Chem. B 1, 17941803 (2013).
http://dx.doi.org/10.1039/c3tb00550j
79.
79. Z. Li, S. Y. Mak, A. Sauret, and H. C. Shum, “ Syringe-pump-induced fluctuation in all-aqueous microfluidic system -- implications for flow rate accuracy,” Lab Chip (published online 2013).
http://dx.doi.org/10.1039/c3lc51176f
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4827916
Loading
/content/aip/journal/bmf/7/6/10.1063/1.4827916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/6/10.1063/1.4827916
2013-12-27
2014-07-31

Abstract

Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/6/1.4827916.html;jsessionid=6sq132lk3krg2.x-aip-live-02?itemId=/content/aip/journal/bmf/7/6/10.1063/1.4827916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: All-aqueous multiphase microfluidics
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4827916
10.1063/1.4827916
SEARCH_EXPAND_ITEM