1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Microfluidics-enabled method to identify modes of Caenorhabditis elegans paralysis in four anthelmintics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/6/10.1063/1.4829777
1.
1. D. O. Connell, Nat. Rev. Microbiol. 4, 568569 (2006).
http://dx.doi.org/10.1038/nrmicro1469
2.
2. L. C. Gasbarre, L. L. Smith, E. Hoberg, and P. A. Pilitt, Vet. Parasitol. 166, 275280 (2009).
http://dx.doi.org/10.1016/j.vetpar.2009.08.019
3.
3. L. C. Gasbarre, L. L. Smith, J. R. Lichtenfels, and P. A. Pilitt, Vet. Parasitol. 166, 281285 (2009).
http://dx.doi.org/10.1016/j.vetpar.2009.08.018
4.
4. R. Kaminsky, P. Ducray, M. Jung, R. Clover, L. Rufener, J. Bouvier, S. S. Weber, A. Wenger, S. Wieland-Berghausen, T. Goebel, N. Gauvry, F. Pautrat, T. Skripsky, O. Froelich, C. Komoin-Oka, B. Westlund, A. Sluder, and P. Maeser, Nature 452, 176U119 (2008).
http://dx.doi.org/10.1038/nature06722
5.
5. R. G. Woodgate and R. B. Besier, Anim. Reprod. Sci. 50, 440443 (2010).
http://dx.doi.org/10.1071/AN10022
6.
6. Y. Hu, S.-H. Xiao, and R. V. Aroian, PLoS Neglected Trop. Dis. 3, e499 (2009).
http://dx.doi.org/10.1371/journal.pntd.0000499
7.
7. R. J. Martin and A. P. Robertson, Parasitology 134, 10931104 (2007).
http://dx.doi.org/10.1017/S0031182007000029
8.
8. H. Qian, R. J. Martin, and A. P. Robertson, Faseb J. 20, 2606 (2006).
http://dx.doi.org/10.1096/fj.06-6264fje
9.
9. H. Qian, A. P. Robertson, J. A. Powell-Coffman, and R. J. Martin, Faseb J. 22, 3247 (2008).
http://dx.doi.org/10.1096/fj.08-110502
10.
10. V. Leignel, A. Silvestre, J. F. Humbert, and J. Cabaret, Vet. Parasitol. 172, 8088 (2010).
http://dx.doi.org/10.1016/j.vetpar.2010.04.023
11.
11. R. J. Martin, G. X. Bai, C. L. Clark, and A. P. Robertson, Brit. J. Pharmacol. 140, 10681076 (2003).
http://dx.doi.org/10.1038/sj.bjp.0705528
12.
12. Y. Hu, E. G. Platzer, A. Bellier, and R. V. Aroian, Proc. Natl. Acad. Sci. U.S.A. 107, 59555960 (2010).
http://dx.doi.org/10.1073/pnas.0912327107
13.
13. F. Beugnet, D. Kerboeuf, J. C. Nicolle, and D. Soubieux, Vet. Parasitol. 63, 8394 (1996).
http://dx.doi.org/10.1016/0304-4017(95)00879-9
14.
14. T. Kaletta and M. O. Hengartner, Nat. Rev. Drug Discovery 5, 387398 (2006).
http://dx.doi.org/10.1038/nrd2031
15.
15. W. D. Atchison, T. G. Geary, B. Manning, E. A. VandeWaa, and D. P. Thompson, Toxicol. Appl. Pharmacol. 112, 133143 (1992).
http://dx.doi.org/10.1016/0041-008X(92)90289-5
16.
16. S. Gaba, J. Cabaret, C. Sauve, J. Cortet, and A. Silvestre, Vet. Parasitol. 171, 254262 (2010).
http://dx.doi.org/10.1016/j.vetpar.2010.03.040
17.
17. H. Bjørn, A. Roepstorff, P. J. Waller, and P. Nansen, Vet. Parasitol. 37, 2130 (1990).
http://dx.doi.org/10.1016/0304-4017(90)90022-4
18.
18. A. P. Robertson, H. E. Bjorn, and R. J. Martin, Faseb J. 13, 749760 (1999); available at http://www.fasebj.org/content/13/6/749.long.
19.
19. J. E. Richmond and E. M. Jorgensen, Nat. Neurosci. 2, 791797 (1999).
http://dx.doi.org/10.1038/12160
20.
20. E. Ruiz-Lancheros, C. Viau, T. N. Walter, A. Francis, and T. G. Geary, Int. J. Parasitol. 41, 455461 (2011).
http://dx.doi.org/10.1016/j.ijpara.2010.11.009
21.
21. K. G. Simpkin and G. C. Coles, J. Chem. Technol. Biotechnol. 31, 6669 (1981).
http://dx.doi.org/10.1002/jctb.280310110
22.
22. D. R. Boina, E. E. Lewis, and J. R. Bloomquist, Pest Manage. Sci. 64, 646653 (2008).
http://dx.doi.org/10.1002/ps.1591
23.
23. S. McCavera, T. K. Walsh, and A. J. Wolstenholme, Parasitology 134, 11111121 (2007).
http://dx.doi.org/10.1017/S0031182007000042
24.
24. R. D. Pinnock, D. B. Sattelle, K. A. Gration, and I. D. Harrow, Neuropharmacology 27, 843848 (1988).
http://dx.doi.org/10.1016/0028-3908(88)90101-3
25.
25. J. A. Carr, A. Parashar, R. Gibson, A. P. Robertson, R. J. Martin, and S. Pandey, Lab Chip 11, 23852396 (2011).
http://dx.doi.org/10.1039/c1lc20170k
26.
26. B. Chen, A. Deutmeyer, J. Carr, A. P. Robertson, R. J. Martin, and S. Pandey, Parasitology 138, 8088 (2011).
http://dx.doi.org/10.1017/S0031182010001010
27.
27. J. N. Saldanha, A. Parashar, S. Pandey, and J. A. Powell-Coffman, Toxicol. Sci. 135, 156168 (2013).
http://dx.doi.org/10.1093/toxsci/kft138
28.
28. K. Chung, M. M. Crane, and H. Lu, Nat. Methods 5, 637643 (2008).
http://dx.doi.org/10.1038/nmeth.1227
29.
29. J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, Nat. Methods 8, 153U178 (2011).
http://dx.doi.org/10.1038/nmeth.1555
30.
30. W. Shi, H. Wen, Y. Lu, Y. Shi, B. Lin, and J. Qin, Lab Chip 10, 28552863 (2010).
http://dx.doi.org/10.1039/c0lc00256a
31.
31. W. Shi, J. Qin, N. Ye, and B. Lin, Lab Chip 8, 14321435 (2008).
http://dx.doi.org/10.1039/b808753a
32.
32. J. C. Bettinger and S. L. McIntire, Genes Brain Behav. 3, 266272 (2004).
http://dx.doi.org/10.1111/j.1601-183X.2004.00080.x
33.
33. A. Parashar, R. Lycke, J. A. Carr, and S. Pandey, Biomicrofluidics 5, 024112024119 (2011).
http://dx.doi.org/10.1063/1.3604391
34.
34. R. J. Martin, C. L. Clark, S. M. Trailovic, and A. P. Robertson, Int. J. Parasitol. 34, 10831090 (2004).
http://dx.doi.org/10.1016/j.ijpara.2004.04.014
35.
35. S. H. Xiao, W. Hui-Ming, M. Tanner, J. Utzinger, and W. Chong, Acta Trop. 94, 114 (2005).
http://dx.doi.org/10.1016/j.actatropica.2005.01.013
36.
36. P. Steinmann, X.-N. Zhou, Z.-W. Du, J.-Y. Jiang, S.-H. Xiao, Z.-X. Wu, H. Zhou, and J. Utzinger, PLoS Neglected Trop. Dis. 2, e322 (2008).
http://dx.doi.org/10.1371/journal.pntd.0000322
37.
37. T. Boulin, M. Gielen, J. E. Richmond, D. C. Williams, P. Paoletti, and J.-L. Bessereau, Proc. Natl. Acad. Sci. U.S.A. 105, 1859018595 (2008).
http://dx.doi.org/10.1073/pnas.0806933105
38.
38. L. A. Brown, A. K. Jones, S. D. Buckingham, C. J. Mee, and D. B. Sattelle, Int. J. Parasitol. 36, 617624 (2006).
http://dx.doi.org/10.1016/j.ijpara.2006.01.016
39.
39. E. Culetto, H. A. Baylis, J. E. Richmond, A. K. Jones, J. T. Fleming, M. D. Squire, J. A. Lewis, and D. B. Sattelle, J. Biol. Chem. 279, 4247642483 (2004).
http://dx.doi.org/10.1074/jbc.M404370200
40.
40. C. E. James and M. W. Davey, Int. J. Parasitol. 39, 213220 (2009).
http://dx.doi.org/10.1016/j.ijpara.2008.06.009
41.
41. K. Kaewintajuk, P. Y. Cho, S. Y. Kim, E. S. Lee, H. K. Lee, E. B. Choi, and H. Park, Parasitol. Res. 107, 2730 (2010).
http://dx.doi.org/10.1007/s00436-010-1828-8
42.
42. T. C. Y. Kwok, N. Ricker, R. Fraser, A. W. Chan, A. Burns, E. F. Stanley, P. McCourt, S. R. Cutler, and P. J. Roy, Nature 441, 9195 (2006).
http://dx.doi.org/10.1038/nature04657
43.
43. D. Kokel, J. Bryan, C. Laggner, R. White, C. Y. Cheung, R. Mateus, D. Healey, S. Kim, A. A. Werdich, S. J. Haggarty, C. A. Macrae, B. Shoichet, and R. T. Peterson, Nat. Chem. Biol. 6, 231237 (2010).
http://dx.doi.org/10.1038/nchembio.307
44.
44. R. Ghosh, A. Mohammadi, L. Kruglyak, and W. S. Ryu, BMC Biol. 10, 85 (2012).
http://dx.doi.org/10.1186/1741-7007-10-85
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4829777
Loading
/content/aip/journal/bmf/7/6/10.1063/1.4829777
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/6/10.1063/1.4829777
2013-11-06
2014-09-20

Abstract

The discovery of new drugs is often propelled by the increasing resistance of parasites to existing drugs and the availability of better technology platforms. The area of microfluidics has provided devices for faster screening of compounds, controlled sampling/sorting of whole animals, and automated behavioral pattern recognition. In most microfluidic devices, drug effects on small animals (e.g., ) are quantified by an end-point, dose response curve representing a single parameter (such as worm velocity or stroke frequency). Here, we present a multi-parameter extraction method to characterize modes of paralysis in over an extended time period. A microfluidic device with real-time imaging is used to expose to four anthelmintic drugs (i.e., pyrantel, levamisole, tribendimidine, and methyridine). We quantified worm behavior with parameters such as curls per second, types of paralyzation, mode frequency, and number/duration of active/immobilization periods. Each drug was chosen at EC where 75% of the worm population is responsive to the drug. At equipotent concentrations, we observed differences in the manner with which worms paralyzed in drug environments. Our study highlights the need for assaying drug effects on small animal models with multiple parameters quantified at regular time points over an extended period to adequately capture the resistance and adaptability in chemical environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/6/1.4829777.html;jsessionid=4pk0knshwm294.x-aip-live-06?itemId=/content/aip/journal/bmf/7/6/10.1063/1.4829777&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microfluidics-enabled method to identify modes of Caenorhabditis elegans paralysis in four anthelmintics
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4829777
10.1063/1.4829777
SEARCH_EXPAND_ITEM