1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/6/10.1063/1.4832095
1.
1. C. M. Croce, Nat. Rev. Genet. 10, 704 (2009).
http://dx.doi.org/10.1038/nrg2634
2.
2. D. P. Bartel, Cell 136, 215 (2009).
http://dx.doi.org/10.1016/j.cell.2009.01.002
3.
3. G. S. Pall, C. Codony-Servat, J. Byrne, L. Ritchie, and A. Hamilton, Nucleic Acids Res. 35, e60 (2007).
http://dx.doi.org/10.1093/nar/gkm112
4.
4. J. M. Thomson, J. Parker, C. M. Perou, and S. M. Hammond, Nat. Methods 1, 47 (2004).
http://dx.doi.org/10.1038/nmeth704
5.
5. C. K. Raymond, B. S. Roberts, P. Garrett-Engele, L. P. Lim, and J. M. Johnson, RNA 11, 1737 (2005).
http://dx.doi.org/10.1261/rna.2148705
6.
6. E. C. Le Ru and P. G. Etchegoin, Annu. Rev. Phys. Chem. 63, 65 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143757
7.
7. P. G. Etchegoin and E. C. Le Ru, Phys. Chem. Chem. Phys. 10, 6079 (2008).
http://dx.doi.org/10.1039/b809196j
8.
8. L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. Van Duyne, Nanomedicine 6, 1447 (2011).
http://dx.doi.org/10.2217/nnm.11.117
9.
9. K. Bhatnagar, A. Pathak, D. Menke, P. V. Cornish, K. Gangopadhyay, V. Korampally, and S. Gangopadhyay, Nanotechnology 23, 495201 (2012).
http://dx.doi.org/10.1088/0957-4484/23/49/495201
10.
10. P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, Plasmonics 2, 173 (2007).
http://dx.doi.org/10.1007/s11468-007-9036-9
11.
11. Y. Tu, P. Wu, H. Zhang, and C. Cai, Chem. Commun. 48, 10718 (2012).
http://dx.doi.org/10.1039/c2cc35564g
12.
12. H. Du, C. M. Strohsahl, J. Camera, B. L. Miller, and T. D. Krauss, J. Am. Chem. Soc. 127, 7932 (2005).
http://dx.doi.org/10.1021/ja042482a
13.
13. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Phys. Rev. Lett. 95, 017402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.017402
14.
14. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, Nano Lett. 7, 2101 (2007).
http://dx.doi.org/10.1021/nl071084d
15.
15. E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).
http://dx.doi.org/10.1063/1.1629280
16.
16. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, Nano Lett. 8, 2321 (2008).
http://dx.doi.org/10.1021/nl801112e
17.
17. Y. Wang, F. Plouraboue, and H.-C. Chang, Opt. Express 21, 6609 (2013).
http://dx.doi.org/10.1364/OE.21.006609
18.
18. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, J. Phys. Chem. Lett. 4, 496 (2013).
http://dx.doi.org/10.1021/jz302018x
19.
19. R. Gill, L. J. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, J. Phys. Chem. C 116, 16687 (2012).
http://dx.doi.org/10.1021/jp305720q
20.
20. I. F. Cheng, S. Senapati, X. Cheng, S. Basuray, and H.-C. Chang, Lab Chip 10, 828 (2010).
http://dx.doi.org/10.1039/b925854j
21.
21. P. D. Hoffman, P. S. Sarangapani, and Y. Zhu, Langmuir 24, 12164 (2008).
http://dx.doi.org/10.1021/la8013392
22.
22. M. Karhanek, J. T. Kemp, N. Pourmand, R. W. Davis, and C. D. Webb, Nano Lett. 5, 403 (2005).
http://dx.doi.org/10.1021/nl0480464
23.
23. V. V. Thacker, S. Ghosal, S. Hernandez-Ainsa, N. A. W. Bell, and U. F. Keyser, Appl. Phys. Lett. 101, 223704 (2012).
http://dx.doi.org/10.1063/1.4768929
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4832095 for methods and estimation of plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries. [Supplementary Material]
25.
25. J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, J. Phys. Chem. B 109, 7969 (2005).
http://dx.doi.org/10.1021/jp0456842
26.
26. D. Cheng and Q.-H. Xu, Chem. Commun. 2007, 248.
http://dx.doi.org/10.1039/b612401a
27.
27. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.113002
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4832095
Loading
/content/aip/journal/bmf/7/6/10.1063/1.4832095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/6/10.1063/1.4832095
2013-12-04
2014-12-22

Abstract

Plasmonic hot spots, generated by controlled 20-nm Au nanoparticle (NP) assembly, are shown to suppress fluorescent quenching effects of metal NPs, such that hair-pin FRET (Fluorescence resonance energy transfer) probes can achieve label-free ultra-sensitive quantification. The micron-sized assembly is a result of intense induced NP dipoles by focused electric fields through conic nanocapillaries. The efficient NP aggregate antenna and the voltage-tunable NP spacing for optimizing hot spot intensity endow ultra-sensitivity and large dynamic range (fM to pM). The large shear forces during assembly allow high selectivity (2-mismatch discrimination) and rapid detection (15 min) for a DNA mimic of microRNA.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/6/1.4832095.html;jsessionid=36ohcaeu4tlip.x-aip-live-06?itemId=/content/aip/journal/bmf/7/6/10.1063/1.4832095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/6/10.1063/1.4832095
10.1063/1.4832095
SEARCH_EXPAND_ITEM