1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/8/1/10.1063/1.4861435
1.
1. A. Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).
http://dx.doi.org/10.1063/1.119871
2.
2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010).
http://dx.doi.org/10.1038/nature08812
3.
3. N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).
http://dx.doi.org/10.1038/nnano.2006.130
4.
4. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).
http://dx.doi.org/10.1073/pnas.93.24.13770
5.
5. B. M. Venkatesan and R. Bashir, Nat. Nanotechnol. 6, 615 (2011).
http://dx.doi.org/10.1038/nnano.2011.129
6.
6. B. C. Gierhart, D. G. Howitt, S. J. Chen, Z. Zhu, D. E. Kotecki, R. L. Smith, and S. D. Collins, Sens. Actuators, B 132, 593 (2008).
http://dx.doi.org/10.1016/j.snb.2007.11.054
7.
7. M. Taniguchi, M. Tsutsui, K. Yokota, and T. Kawai, Appl. Phys. Lett. 95, 123701 (2009).
http://dx.doi.org/10.1063/1.3236769
8.
8. M. Zwolak, Nano Lett. 5, 421 (2005).
http://dx.doi.org/10.1021/nl048289w
9.
9. J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Lett. 6, 779 (2006).
http://dx.doi.org/10.1021/nl0601076
10.
10. X. Liang and S. Y. Chou, Nano Lett. 8, 1472 (2008).
http://dx.doi.org/10.1021/nl080473k
11.
11. A. P. Ivanov, E. Instuli, C. M. McGilvery, G. Baldwin, D. W. McComb, T. Albrecht, and J. B. Edel, Nano Lett. 11, 279 (2011).
http://dx.doi.org/10.1021/nl103873a
12.
12. M. Tsutsui, S. Rahong, Y. Iizumi, T. Okazaki, M. Taniguchi, and T. Kawai, Sci. Rep. 1, 46 (2011).
http://dx.doi.org/10.1038/srep00046
13.
13. D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss, Nat. Biotechnol. 26, 1146 (2008).
http://dx.doi.org/10.1038/nbt.1495
14.
14. O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 80, 2737 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2737
15.
15. J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004).
http://dx.doi.org/10.1073/pnas.0403849101
16.
16. S. F. Lim, A. Karpusenko, J. J. Sakon, J. A. Hook, T. A. Lamar, and R. Riehn, Biomicrofluidics 5, 034106 (2011).
http://dx.doi.org/10.1063/1.3613671
17.
17. J.-W. Yeh, A. Taloni, Y.-L. Chen, and C.-F. Chou, Nano Lett. 12, 1597 (2012).
http://dx.doi.org/10.1021/nl2045292
18.
18. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Appl. Phys. Lett. 75, 301 (1999).
http://dx.doi.org/10.1063/1.124354
19.
19. M. Altissimo, Biomicrofluidics 4, 026503 (2010).
http://dx.doi.org/10.1063/1.3437589
20.
20. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
http://dx.doi.org/10.1126/science.278.5336.252
21.
21. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm, Nature 425, 698 (2003).
http://dx.doi.org/10.1038/nature02010
22.
22. D. E. Johnston, D. R. Strachan, and A. T. C. Johnson, Nano Lett. 7, 2774 (2007).
http://dx.doi.org/10.1021/nl0713169
23.
23. M. Tsutsui, M. Taniguchi, and T. Kawai, Appl. Phys. Lett. 93, 163115 (2008).
http://dx.doi.org/10.1063/1.3006063
24.
24. A. Kanda, M. Wada, Y. Hamamoto, and Y. Ootuka, Physica E 29, 707 (2005).
http://dx.doi.org/10.1016/j.physe.2005.06.065
25.
25. W. Chen, J. Vac. Sci. Technol. B 11, 2519 (1993).
http://dx.doi.org/10.1116/1.586658
26.
26. M. D. Fischbein, Appl. Phys. Lett. 88, 063116 (2006).
http://dx.doi.org/10.1063/1.2172292
27.
27. T. Maleki, Nanotechnology 20, 105302 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105302
28.
28. M. Tsutsui, M. Taniguchi, and T. Kawai, Nano Lett. 9, 1659 (2009).
http://dx.doi.org/10.1021/nl900177q
29.
29. C. K. Tung, R. Riehn, and R. H. Austin, Biomicrofluidics 3, 031101 (2009).
http://dx.doi.org/10.1063/1.3212074
30.
30. M. Tsutsui, Y. He, M. Furuhashi, S. Rahong, M. Taniguchi, and T. Kawai, Sci. Rep. 2, 394 (2012).
http://dx.doi.org/10.1038/srep00394
31.
31. K.-T. Liao and C.-F. Chou, J. Am. Chem. Soc. 134, 8742 (2012).
http://dx.doi.org/10.1021/ja3016523
32.
32. C. H. Duan, W. Wang, and Q. Xie, Biomicrofluidics 7, 026501 (2013).
http://dx.doi.org/10.1063/1.4794973
33.
33. K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl, Appl. Phys. Lett. 80, 865 (2002).
http://dx.doi.org/10.1063/1.1436275
34.
34. A. Crockett, M. Almoustafa, and W. Vanderlinde, in Microelectronics Failure Analysis Desk Reference 5th Edition (ASM International, 2004), p. 464.
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4861435 for a more detailed description of the device fabrication, electronic board, and AFM surface characterization. [Supplementary Material]
36.
36. M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, Biomicrofluidics 6, 012819 (2012).
http://dx.doi.org/10.1063/1.3673260
37.
37. J. Gu, R. Gupta, C.-F. Chou, Q. Wei, and F. Zenhausern, Lab Chip 7, 1198 (2007).
http://dx.doi.org/10.1039/b704851c
38.
38. T. Leichlé, Y.-L. Lin, P.-C. Chiang, S.-M. Hu, K.-T. Liao, and C.-F. Chou, Sens. Actuators, B 161, 805 (2012).
http://dx.doi.org/10.1016/j.snb.2011.11.036
39.
39. C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, Biophys. J. 95, 273 (2008).
http://dx.doi.org/10.1529/biophysj.107.121020
40.
40. A. A. Travers and M. Buckle, DNA, Protein Interactions: A Practical Approach (Oxford University Press, New York, 2000), p. xxii.
41.
41. S. A. Darst, E. W. Kubalek, and R. D. Kornberg, Nature 340, 730 (1989).
http://dx.doi.org/10.1038/340730a0
42.
42. A. D. Wilson, T. H. P. Chang, and A. Kern, J. Vac. Sci. Technol. 12, 1240 (1975).
http://dx.doi.org/10.1116/1.568506
43.
43. E. H. Anderson, D. Ha, and J. A. Liddle, Microelectron. Eng. 73–74, 74 (2004).
http://dx.doi.org/10.1016/S0167-9317(04)00076-0
44.
44. E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. Mcphail, J. Vac. Sci. Technol. B 27, 2563 (2009).
http://dx.doi.org/10.1116/1.3237099
45.
45. D. Stephani, J. Vac. Sci. Technol. 16, 1739 (1979).
http://dx.doi.org/10.1116/1.570284
46.
46. K. E. Docherty, S. Thoms, P. Dobson, and J. M. R. Weaver, Microelectron. Eng. 85, 761 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.081
47.
47. Y. Higuchi, N. Ohgami, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, Jpn. J. Appl. Phys., Part 2 45, L145 (2006).
http://dx.doi.org/10.1143/JJAP.45.L145
48.
48. D. J. Bonthuis, C. Meyer, D. Stein, and C. Dekker, Phys. Rev. Lett. 101, 108303 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.108303
49.
49. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. Depablo, K. Jo, and D. C. Schwartz, Lab Chip 11, 1721 (2011).
http://dx.doi.org/10.1039/c0lc00680g
50.
50. J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, Biophys. J. 90, 4538 (2006).
http://dx.doi.org/10.1529/biophysj.105.074732
51.
51. R. Pethig, Biomicrofluidics 4, 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
52.
52. V. Chaurey, C. Polanco, C. F. Chou, and N. S. Swami, Biomicrofluidics 6, 012806 (2012).
http://dx.doi.org/10.1063/1.3676069
53.
53. S. F. Lim, A. Karpusenko, A. L. Blumers, D. E. Streng, and R. Riehn, Biomicrofluidics 7, 064105 (2013).
http://dx.doi.org/10.1063/1.4833257
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/1/10.1063/1.4861435
Loading
/content/aip/journal/bmf/8/1/10.1063/1.4861435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/1/10.1063/1.4861435
2014-01-10
2015-04-19

Abstract

We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 m long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/1/1.4861435.html;jsessionid=akllmhkh5m5cd.x-aip-live-06?itemId=/content/aip/journal/bmf/8/1/10.1063/1.4861435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/1/10.1063/1.4861435
10.1063/1.4861435
SEARCH_EXPAND_ITEM