1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Simulations of DNA stretching by flow field in microchannels with complex geometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/8/1/10.1063/1.4863802
1.
1. C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013).
http://dx.doi.org/10.1063/1.4790821
2.
2. T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, Science 264(5160), 822826 (1994).
http://dx.doi.org/10.1126/science.8171336
3.
3. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, Science 268(5207), 8387 (1995).
http://dx.doi.org/10.1126/science.7701345
4.
4. D. E. Smith, T. T. Perkins, and S. Chu, Macromolecules 29(4), 13721373 (1996).
http://dx.doi.org/10.1021/ma951455p
5.
5. T. T. Perkins, D. E. Smith, and S. Chu, Science 276(5321), 20162021 (1997).
http://dx.doi.org/10.1126/science.276.5321.2016
6.
6. S. R. Quake, H. Babcock, and S. Chu, Nature 388(6638), 151154 (1997).
http://dx.doi.org/10.1038/40588
7.
7. D. E. Smith and S. Chu, Science 281(5381), 13351340 (1998).
http://dx.doi.org/10.1126/science.281.5381.1335
8.
8. D. E. Smith, H. P. Babcock, and S. Chu, Science 283(5408), 17241727 (1999).
http://dx.doi.org/10.1126/science.283.5408.1724
9.
9. C. M. Schroeder, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Science 301(5639), 15151519 (2003).
http://dx.doi.org/10.1126/science.1086070
10.
10. A. Balducci, P. Mao, J. Y. Han, and P. S. Doyle, Macromolecules 39(18), 62736281 (2006).
http://dx.doi.org/10.1021/ma061047t
11.
11. C. C. Hsieh, A. Balducci, and P. S. Doyle, Macromolecules 40(14), 51965205 (2007).
http://dx.doi.org/10.1021/ma070570k
12.
12. C. C. Hsieh, A. Balducci, and P. S. Doyle, Nano Lett. 8(6), 16831688 (2008).
http://dx.doi.org/10.1021/nl080605+
13.
13. Y. L. Chen, M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S. Doyle, Phys. Rev. E 70(6), 060901 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.060901
14.
14. A. Balducci, C. C. Hsieh, and P. S. Doyle, Phys. Rev. Lett. 99(23), 238102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.238102
15.
15. C. C. Hsieh and P. S. Doyle, Korea-Aust. Rheol. J. 20(3), 127142 (2008).
16.
16. J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101(30), 1097910983 (2004).
http://dx.doi.org/10.1073/pnas.0403849101
17.
17. W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. N. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Phys. Rev. Lett. 94(19), 196101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.196101
18.
18. M. D. Graham, Annu. Rev. Fluid Mech. 43, 273298 (2011).
http://dx.doi.org/10.1146/annurev-fluid-121108-145523
19.
19. C. C. Hsieh, L. Li, and R. G. Larson, J. Non-Newton. Fluid Mech. 113(2–3), 147191 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00107-1
20.
20. C. C. Hsieh and R. G. Larson, J. Rheol. 48(5), 9951021 (2004).
http://dx.doi.org/10.1122/1.1781171
21.
21. C. C. Hsieh and R. G. Larson, J. Rheol. 49(5), 10811089 (2005).
http://dx.doi.org/10.1122/1.2000971
22.
22. C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu, Macromolecules 38(5), 19671978 (2005).
http://dx.doi.org/10.1021/ma0480796
23.
23. R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Macromolecules 38(2), 581592 (2005).
http://dx.doi.org/10.1021/ma048077l
24.
24. D. R. Tree, Y. Wang, and K. D. Dorfman, Biomicrofluidics 7(5), 054118 (2013).
http://dx.doi.org/10.1063/1.4826156
25.
25. Y. L. Chen, Biomicrofluidics 7(5), 054119 (2013).
http://dx.doi.org/10.1063/1.4826157
26.
26. W. F. Reinhart, D. R. Tree, and K. D. Dorfman, Biomicrofluidics 7(2), 024102 (2013).
http://dx.doi.org/10.1063/1.4794371
27.
27. R. G. Larson, J. Rheol. 49(1), 170 (2005).
http://dx.doi.org/10.1122/1.1835336
28.
28. C. C. Hsieh, S. J. Park, and R. G. Larson, Macromolecules 38(4), 14561468 (2005).
http://dx.doi.org/10.1021/ma0491255
29.
29. J. M. Kim and P. S. Doyle, J. Chem. Phys. 125(7), 074906 (2006).
http://dx.doi.org/10.1063/1.2222374
30.
30. R. M. Jendrejack, E. T. Dimalanta, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, Phys. Rev. Lett. 91(3), 038102 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.038102
31.
31. R. M. Jendrejack, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, J. Chem. Phys. 119(2), 11651173 (2003).
http://dx.doi.org/10.1063/1.1575200
32.
32. Y. L. Chen, M. D. Graham, J. J. de Pablo, K. Jo, and D. C. Schwartz, Macromolecules 38(15), 66806687 (2005).
http://dx.doi.org/10.1021/ma050238d
33.
33. Y. Zhang, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 136(1), 014901 (2012).
http://dx.doi.org/10.1063/1.3672103
34.
34. J. Rotne and S. Prager, J. Chem. Phys. 50(11), 48314837 (1969).
http://dx.doi.org/10.1063/1.1670977
35.
35. N. Liron and S. Mochon, J. Eng. Math. 10(4), 287303 (1976).
http://dx.doi.org/10.1007/BF01535565
36.
36. L. Fang, C. C. Hsieh, and R. G. Larson, Macromolecules 40(23), 84908499 (2007).
http://dx.doi.org/10.1021/ma062630c
37.
37. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30, 329364 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
38.
38. A. Malevanets and R. Kapral, J. Chem. Phys. 110(17), 86058613 (1999).
http://dx.doi.org/10.1063/1.478857
39.
39. A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll, Europhys. Lett. 56(3), 319325 (2001).
http://dx.doi.org/10.1209/epl/i2001-00522-9
40.
40. G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, Adv. Polym. Sci. 221, 187 (2009).
http://dx.doi.org/10.1007/12_2008_5
41.
41. O. B. Usta, J. E. Butler, and A. J. C. Ladd, Phys. Fluids 18(3), 031703 (2006).
http://dx.doi.org/10.1063/1.2186591
42.
42. N. Watari, M. Makino, N. Kikuchi, R. G. Larson, and M. Doi, J. Chem. Phys. 126(9), 094902 (2007).
http://dx.doi.org/10.1063/1.2538831
43.
43. Y. L. Chen, H. Ma, M. D. Graham, and J. J. de Pablo, Macromolecules 40(16), 59785984 (2007).
http://dx.doi.org/10.1021/ma070729t
44.
44. X. Hu, S. N. Wang, and L. J. Lee, Phys. Rev. E 79(4), 041911 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.041911
45.
45. W. C. Liao, X. Hu, W. X. Wang, and L. J. Lee, Biomicrofluidics 7(3), 034103 (2013).
http://dx.doi.org/10.1063/1.4807462
46.
46. A. Mohan and P. S. Doyle, Macromolecules 40(24), 87948806 (2007).
http://dx.doi.org/10.1021/ma071354e
47.
47. J. Ou, J. Cho, D. W. Olson, and K. D. Dorfman, Phys. Rev. E 79(6), 061904 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061904
48.
48. J. Cho and K. D. Dorfman, J. Chromatogr. A 1217(34), 55225528 (2010).
http://dx.doi.org/10.1016/j.chroma.2010.06.057
49.
49. J. Cho, S. Kumar and K. D. Dorfman, Electrophoresis 31 (5), 860867 (2010).
http://dx.doi.org/10.1002/elps.200900491
50.
50. C. C. Zuo, F. Ji, and Q. Q. Cao, Polymer 50(22), 53265332 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.09.043
51.
51. Z. Chun-Cheng, J. Feng, C. Qian-Qian, and Y. Jing-Song, Polymer 49(3), 809815 (2008).
http://dx.doi.org/10.1016/j.polymer.2007.12.013
52.
52. D. W. Trahan and P. S. Doyle, Biomicrofluidics 3(1), 12803 (2009).
http://dx.doi.org/10.1063/1.3055275
53.
53. K. D. Dorfman, S. B. King, D. W. Olson, J. D. P. Thomas, and D. R. Tree, Chem. Rev. 113(4), 25842667 (2013).
http://dx.doi.org/10.1021/cr3002142
54.
54. J. M. Kim and P. S. Doyle, Lab Chip 7(2), 213225 (2007).
http://dx.doi.org/10.1039/b612021k
55.
55. C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011).
http://dx.doi.org/10.1063/1.3655565
56.
56. C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6(4), 044105 (2012).
http://dx.doi.org/10.1063/1.4763559
57.
57. Z. Chen and K. D. Dorfman, “Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis,” Electrophoresis (in press).
http://dx.doi.org/10.1002/elps.201300381
58.
58. J. Tang, N. Du, and P. S. Doyle, Proc. Natl. Acad. Sci. U. S. A. 108(39), 1615316158 (2011).
http://dx.doi.org/10.1073/pnas.1105547108
59.
59. D. Long, J. L. Viovy, and A. Ajdari, J. Phys.-Condens. Matter 8(47), 94719475 (1996).
http://dx.doi.org/10.1088/0953-8984/8/47/047
60.
60. K. Jo, Y. L. Chen, J. J. de Pablo, and D. C. Schwartz, Lab Chip 9(16), 23482355 (2009).
http://dx.doi.org/10.1039/b902292a
61.
61. N. P. Teclemariam, V. A. Beck, E. S. G. Shaqfeh, and S. J. Muller, Macromolecules 40(10), 38483859 (2007).
http://dx.doi.org/10.1021/ma062892e
62.
62. P. T. Underhill and P. S. Doyle, J. Non-Newton. Fluid Mech. 122(1–3), 331 (2004).
http://dx.doi.org/10.1016/j.jnnfm.2003.10.006
63.
63. R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, Phys. Rev. E 55(2), 17941797 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.1794
64.
64. R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 116(17), 77527759 (2002).
http://dx.doi.org/10.1063/1.1466831
65.
65. D. M. Heyes and J. R. Melrose, J. Non-Newton. Fluid Mech. 46(1), 128 (1993).
http://dx.doi.org/10.1016/0377-0257(93)80001-R
66.
66. A. Balducci and P. S. Doyle, Macromolecules 41(14), 54855492 (2008).
http://dx.doi.org/10.1021/ma8010087
67.
67. R. M. Jendrejack, D. C. Schwartz, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 120(5), 25132529 (2004).
http://dx.doi.org/10.1063/1.1637331
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/1/10.1063/1.4863802
Loading
/content/aip/journal/bmf/8/1/10.1063/1.4863802
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/1/10.1063/1.4863802
2014-02-07
2015-04-01

Abstract

Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics (1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/1/1.4863802.html;jsessionid=27otesrexlpdb.x-aip-live-03?itemId=/content/aip/journal/bmf/8/1/10.1063/1.4863802&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Simulations of DNA stretching by flow field in microchannels with complex geometry
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/1/10.1063/1.4863802
10.1063/1.4863802
SEARCH_EXPAND_ITEM