1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Diffraction-limited ultrasensitive molecular nano-arrays with singular nano-cone scattering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/8/2/10.1063/1.4869694
1.
1. S. Zhang, A. Garcia-D'Angeli, J. P. Brennan, and Q. Huo, Analyst 139, 439 (2014).
http://dx.doi.org/10.1039/c3an01835k
2.
2. S. W. Kim, Z. Li, P. S. Moore, A. P. Monaghan, Y. Chang, M. Nichols, and B. John, Nucleic Acids Res. 38, e98 (2010).
http://dx.doi.org/10.1093/nar/gkp1235
3.
3. J. Shingara, RNA 11, 1461 (2005).
http://dx.doi.org/10.1261/rna.2610405
4.
4.See http://www.chem.agilent.com/library/applications/5988_9498en_scanner_paper72.pdf for the evidence of scattering noise degrading sensitivity of DNA microarray.
5.
5. D. Klein, Trends Mol. Med. 8, 257 (2002).
http://dx.doi.org/10.1016/S1471-4914(02)02355-9
6.
6. T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, Nature 382, 697 (1996).
http://dx.doi.org/10.1038/382697a0
7.
7. M. Bowden, L. Song, and D. R. Walt, Anal. Chem. 77, 5583 (2005).
http://dx.doi.org/10.1021/ac050503t
8.
8. F. Deiss, N. Sojic, D. J. White, and P. R. Stoddart, Anal. Bioanal. Chem. 396, 53 (2010).
http://dx.doi.org/10.1007/s00216-009-3211-0
9.
9. Y. Wang, F. Plouraboue, and H.-C. Chang, Opt. Express 21, 6609 (2013).
http://dx.doi.org/10.1364/OE.21.006609
10.
10. Y. Wang, X. Cheng, and H.-C. Chang, AIChE J. 59, 1830 (2013).
http://dx.doi.org/10.1002/aic.14123
11.
11. N. A. Issa and R. Guckenberger, Opt. Express 15, 12131 (2007).
http://dx.doi.org/10.1364/OE.15.012131
12.
12. E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4014
13.
13. Y. Wang, S. Senapati, P. Stoddart, S. Howard, and H.-C. Chang, Proc. SPIE 8812, 88120Q (2013).
http://dx.doi.org/10.1117/12.2023727
14.
14. F. Deiss, S. Laurent, E. Descamps, T. Livache, and N. Sojic, Analyst 136, 327 (2011).
http://dx.doi.org/10.1039/c0an00501k
15.
15. L. Cao, B. Nabet, and J. Spanier, Phys. Rev. Lett. 96(15), 157402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.157402
16.
16. S. Liu, Y. Yan, Y. Wang, S. Senapati, and H.-C. Chang, Biomicrofluidics 7, 061102 (2013).
http://dx.doi.org/10.1063/1.4832095
17.
17. A. Sommerfeld, Math. Ann. 47, 317 (I896).
http://dx.doi.org/10.1007/BF01447273
18.
18. J. B. Keller, IRE Trans. Antennas Propag. 8, 175 (1960).
http://dx.doi.org/10.1109/TAP.1960.1144832
19.
19. V. M. Sundaram and S.-b. Wen, Opt. Lett. 39, 582 (2014).
http://dx.doi.org/10.1364/OL.39.000582
20.
20. A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953).
http://dx.doi.org/10.1063/1.1721461
21.
21. Y. Luo, J. B. Pendry, and A. Aubry, Nano Lett. 10, 4186 (2010).
http://dx.doi.org/10.1021/nl102498s
22.
22. S. K. Thamida and H.-C. Chang, Phys. Fluids 14, 4315 (2002).
http://dx.doi.org/10.1063/1.1519530
23.
23. R. Zhou, P. Wang, and H.-C. Chang, Electrophoresis 27(7), 1376 (2006).
http://dx.doi.org/10.1002/elps.200500329
24.
24. S. Basuray, S. Senapati, A. Aijian, A. R. Mahon, and H.-C. Chang, ACS Nano 3, 1823 (2009).
http://dx.doi.org/10.1021/nn9004632
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4869694 for fabrication methods, materials and imaging analysis. [Supplementary Material]
26.
26. I.-F. Cheng, S. Senapati, X. Cheng, S. Basuray, and H.-C. Chang, Lab Chip 10, 828 (2010).
http://dx.doi.org/10.1039/b925854j
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/2/10.1063/1.4869694
Loading
/content/aip/journal/bmf/8/2/10.1063/1.4869694
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/2/10.1063/1.4869694
2014-03-26
2014-11-29

Abstract

Large-library fluorescent molecular arrays remain limited in sensitivity (1 × 106 molecules) and dynamic range due to background auto-fluorescence and scattering noise within a large (20–100 m) fluorescent spot. We report an easily fabricated silica nano-cone array platform, with a detection limit of 100 molecules and a dynamic range that spans 6 decades, due to point (10 nm to 1 m) illumination of preferentially absorbed tagged targets by singular scattering off wedged cones. Its fluorescent spot reaches diffraction-limited submicron dimensions, which are 104 times smaller in area than conventional microarrays, with comparable reduction in detection limit and amplification of dynamic range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/2/1.4869694.html;jsessionid=75r5obehv6il7.x-aip-live-06?itemId=/content/aip/journal/bmf/8/2/10.1063/1.4869694&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Diffraction-limited ultrasensitive molecular nano-arrays with singular nano-cone scattering
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/2/10.1063/1.4869694
10.1063/1.4869694
SEARCH_EXPAND_ITEM