NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.See for information about a robot, dedicated to in situ hybridization experiments.
2. P. A. Bunn, B. Helfrich, A. F. Soriano, W. A. Franklin, M. Varella-garcia, F. R. Hirsch, A. Baron, C. Zeng, and D. C. Chan, Clin. Cancer Res. 7, 32393250 (2001).
3. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, Chem. Soc. Rev. 39, 11531182 (2010).
4. C. D. Chin, V. Linder, and S. K. Sia, Lab Chip 12, 21182134 (2012).
5. E. Berthier, E. W. K. Young, and D. Beebe, Lab Chip 12, 12241237 (2012).
6. A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Nat. Methods 6, 147152 (2009).
7. W.-H. Tan and S. Takeuchi, Proc. Natl. Acad. Sci. U.S.A. 104, 11461151 (2006).
8. J. Voldman, Annu. Rev. Biomed. Eng. 8, 29 (2006).
9. G. Mottet, J. Villemejane, L. M. Mir, and B. Le Pioufle, J. Micromech. Microeng. 20, 047001 (2010).
10. E. W. H. Jager, O. Inganäs, and I. Lundström, Science 288, 2335 (2000).
11. T. G. Leonga, C. L. Randallb, B. R. Bensona, N. Bassika, G. M. Sterna, and D. H. Gracias, Prco. Natl. Acad. Sci. U.S.A. 106, 703708 (2009).
12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370372 (2005).
13. Z. Chen, Y. Li, W. Liu, D. Zhang, Y. Zhao, B. Yuan, and X. Jiang, Angew. Chem., Int. Ed. Engl. 48, 83038305 (2009).
14. A. Khademhosseini, K. Y. Suh, J. M. Yang, G. Eng, J. Yeh, S. Levenberg, and R. Langer, Biomaterials 25, 35833592 (2004).
15. H. Hwang, G. Kang, J. H. Yeon, Y. Nam, and J.-K. Park, Lab Chip 9, 167170 (2009).
16. S. L. Stott, C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner, Proc. Natl. Acad. Sci. U.S.A. 107, 1839218397 (2010).
17. T. F. Didar and M. Tabrizian, Lab Chip 10, 30433053 (2010).
18. A. Bernard, E. Delamarche, and H. Schmid, Langmuir 14, 2225 (1998).
19. D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491502 (2010).
20. R. D. Lovchik, F. Bianco, M. Matteoli, and E. Delamarche, Lab Chip 9, 13951402 (2009).
21. H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen, Anal. Chem. 76, 52575264 (2004).
22. T. Popov, R. Gottschalk, R. Kolendowicz, J. Dolovich, P. Powers, and F. E. Hargreave, Clin. Exp. Allergy 24, 778783 (1994).
23. E. Schröck, S. Du Manoir, and T. Veldman, Science 273, 494 (1996).
24. V. J. Sieben, C. S. Debes-Marun, L. M. Pilarski, and C. J. Backhouse, Lab Chip 8, 21512156 (2008).
25. A. Zanardi, D. Bandiera, F. Bertolini, C. A. Corsini, G. Gregato, P. Milani, E. Barborini, and R. Carbone, Biotechniques 49, 497504 (2010).
26. I. Vedarethinam, P. Shah, M. Dimaki, Z. Tumer, N. Tommerup, and W. E. Svendsen, Sensors (Basel) 10, 98319846 (2010).
27.See supplementary material at for pictures of the chip during and after experiments with cells and a FISH experiment made on a glass slide. [Supplementary Material]
28. P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, Microfluid. Nanofluid. 9, 145161 (2010).
29. S. Miserere, G. Mottet, V. Taniga, S. Descroix, J.-L. Viovy, and L. Malaquin, Lab Chip 12, 18491856 (2012).
30. S. T. Ligthart, F.-C. Bidard, C. Decraene, T. Bachelot, S. Delaloge, E. Brain, M. Campone, P. Viens, J.-Y. Pierga, and L. W. M. M. Terstappen, Ann. Oncol. 24, 12311238 (2013).
31. C. Fütterer, N. Minc, V. Bormuth, J.-H. Codarbox, P. Laval, J. Rossier, and J.-L. Viovy, Lab Chip 4, 351356 (2004).
32. L. Chau, M. Doran, and J. Cooper-White, Lab Chip 9, 18971902 (2009).
33. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nat. Biotechnol. 21, 4146 (2002).
34. A. J. Nahmias, R. J. Whitley, A. N. Visintine, Y. Takei, and C. A. Alford, J. Infect. Dis. 145, 829836 (1982).
35. A. Vincent-Salomon, F. C. Bidard, and J. Y. Pierga, J. Clin. Pathol. 61, 570576 (2008).
36. F. Farace, C. Massard, N. Vimond, F. Drusch, N. Jacques, F. Billiot, a Laplanche, a Chauchereau, L. Lacroix, D. Planchard, S. Le Moulec, F. André, K. Fizazi, J. C. Soria, and P. Vielh, Br. J. Cancer 105, 847853 (2011).
37. M. F. Press, L. Bernstein, P. A. Thomas, L. F. Meisner, J. Y. Zhou, Y. Ma, G. Hung, R. A. Robinson, C. Harris, A. El-Naggar, D. J. Slamon, R. N. Phillips, J. S. Ross, S. R. Wolman, and K. J. Flom, J. Clin. Oncol. 15, 28942904 (1997).
38. A. C. Wolff, M. E. H. Hammond, J. N. Schwartz, K. L. Hagerty, D. C. Allred, R. J. Cote, M. Dowsett, P. L. Fitzgibbons, W. M. Hanna, A. Langer, L. M. McShane, S. Paik, M. D. Pegram, E. A. Perez, M. F. Press, A. Rhodes, C. Sturgeon, S. E. Taube, R. Tubbs, G. H. Vance, M. van de Vijver, T. M. Wheeler, and D. F. Hayes, J. Clin. Oncol. 25, 118145 (2006).
39. J. Sibarita, Microsc. Res. Tech. 95, 201243 (2005).

Data & Media loading...


Article metrics loading...



We present a low cost microfluidic chip integrating 3D micro-chambers for the capture and the analysis of cells. This device has a simple design and a small footprint. It allows the implementation of standard biological protocols in a chip format with low volume consumption. The manufacturing process relies on hot-embossing of cyclo olefin copolymer, allowing the development of a low cost and robust device. A 3D design of microchannels was used to induce high flow velocity contrasts in the device and provide a selective immobilization. In narrow distribution channels, the liquid velocity induces a shear stress that overcomes adhesion forces and prevents cell immobilization or clogging. In large 3D chambers, the liquid velocity drops down below the threshold for cell attachment. The devices can be operated in a large range of input pressures and can even be handled manually using simple syringe or micropipette. Even at high flow injection rates, the 3D structures protect the captured cell from shear stress. To validate the performances of our device, we implemented immuno-fluorescence labeling and Fluorescence Hybridization (FISH) analysis on cancer cell lines and on a patient pleural effusion sample. FISH is a Food and Drug Administration approved cancer diagnostic technique that provides quantitative information about gene and chromosome aberration at the single cell level. It is usually considered as a long and fastidious test in medical diagnosis. This process can be easily implanted in our platform, and high resolution fluorescence imaging can be performed with reduced time and computer intensiveness. These results demonstrate the potential of this chip as a low cost, robust, and versatile tool adapted to complex and demanding protocols for medical diagnosis.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A three dimensional thermoplastic microfluidic chip for robust cell capture and high resolution imaging