1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/2/10.1063/1.4871035
1.
1.See http://www.intavis.com/en/In_Situ_Detection/InsituPro_VSi/index.php for information about a robot, dedicated to in situ hybridization experiments.
2.
2. P. A. Bunn, B. Helfrich, A. F. Soriano, W. A. Franklin, M. Varella-garcia, F. R. Hirsch, A. Baron, C. Zeng, and D. C. Chan, Clin. Cancer Res. 7, 32393250 (2001).
3.
3. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, Chem. Soc. Rev. 39, 11531182 (2010).
http://dx.doi.org/10.1039/b820557b
4.
4. C. D. Chin, V. Linder, and S. K. Sia, Lab Chip 12, 21182134 (2012).
http://dx.doi.org/10.1039/c2lc21204h
5.
5. E. Berthier, E. W. K. Young, and D. Beebe, Lab Chip 12, 12241237 (2012).
http://dx.doi.org/10.1039/c2lc20982a
6.
6. A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Nat. Methods 6, 147152 (2009).
http://dx.doi.org/10.1038/nmeth.1290
7.
7. W.-H. Tan and S. Takeuchi, Proc. Natl. Acad. Sci. U.S.A. 104, 11461151 (2006).
http://dx.doi.org/10.1073/pnas.0606625104
8.
8. J. Voldman, Annu. Rev. Biomed. Eng. 8, 29 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
9.
9. G. Mottet, J. Villemejane, L. M. Mir, and B. Le Pioufle, J. Micromech. Microeng. 20, 047001 (2010).
http://dx.doi.org/10.1088/0960-1317/20/4/047001
10.
10. E. W. H. Jager, O. Inganäs, and I. Lundström, Science 288, 2335 (2000).
http://dx.doi.org/10.1126/science.288.5475.2335
11.
11. T. G. Leonga, C. L. Randallb, B. R. Bensona, N. Bassika, G. M. Sterna, and D. H. Gracias, Prco. Natl. Acad. Sci. U.S.A. 106, 703708 (2009).
http://dx.doi.org/10.1073/pnas.0807698106
12.
12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370372 (2005).
http://dx.doi.org/10.1038/nature03831
13.
13. Z. Chen, Y. Li, W. Liu, D. Zhang, Y. Zhao, B. Yuan, and X. Jiang, Angew. Chem., Int. Ed. Engl. 48, 83038305 (2009).
http://dx.doi.org/10.1002/anie.200902708
14.
14. A. Khademhosseini, K. Y. Suh, J. M. Yang, G. Eng, J. Yeh, S. Levenberg, and R. Langer, Biomaterials 25, 35833592 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2003.10.033
15.
15. H. Hwang, G. Kang, J. H. Yeon, Y. Nam, and J.-K. Park, Lab Chip 9, 167170 (2009).
http://dx.doi.org/10.1039/b810341k
16.
16. S. L. Stott, C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner, Proc. Natl. Acad. Sci. U.S.A. 107, 1839218397 (2010).
http://dx.doi.org/10.1073/pnas.1012539107
17.
17. T. F. Didar and M. Tabrizian, Lab Chip 10, 30433053 (2010).
http://dx.doi.org/10.1039/c0lc00130a
18.
18. A. Bernard, E. Delamarche, and H. Schmid, Langmuir 14, 2225 (1998).
http://dx.doi.org/10.1021/la980037l
19.
19. D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491502 (2010).
http://dx.doi.org/10.1038/nprot.2009.234
20.
20. R. D. Lovchik, F. Bianco, M. Matteoli, and E. Delamarche, Lab Chip 9, 13951402 (2009).
http://dx.doi.org/10.1039/b820198f
21.
21. H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen, Anal. Chem. 76, 52575264 (2004).
http://dx.doi.org/10.1021/ac049837t
22.
22. T. Popov, R. Gottschalk, R. Kolendowicz, J. Dolovich, P. Powers, and F. E. Hargreave, Clin. Exp. Allergy 24, 778783 (1994).
http://dx.doi.org/10.1111/j.1365-2222.1994.tb00990.x
23.
23. E. Schröck, S. Du Manoir, and T. Veldman, Science 273, 494 (1996).
http://dx.doi.org/10.1126/science.273.5274.494
24.
24. V. J. Sieben, C. S. Debes-Marun, L. M. Pilarski, and C. J. Backhouse, Lab Chip 8, 21512156 (2008).
http://dx.doi.org/10.1039/b812443d
25.
25. A. Zanardi, D. Bandiera, F. Bertolini, C. A. Corsini, G. Gregato, P. Milani, E. Barborini, and R. Carbone, Biotechniques 49, 497504 (2010).
http://dx.doi.org/10.2144/000113445
26.
26. I. Vedarethinam, P. Shah, M. Dimaki, Z. Tumer, N. Tommerup, and W. E. Svendsen, Sensors (Basel) 10, 98319846 (2010).
http://dx.doi.org/10.3390/s101109831
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4871035 for pictures of the chip during and after experiments with cells and a FISH experiment made on a glass slide. [Supplementary Material]
28.
28. P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, Microfluid. Nanofluid. 9, 145161 (2010).
http://dx.doi.org/10.1007/s10404-010-0605-4
29.
29. S. Miserere, G. Mottet, V. Taniga, S. Descroix, J.-L. Viovy, and L. Malaquin, Lab Chip 12, 18491856 (2012).
http://dx.doi.org/10.1039/c2lc21161k
30.
30. S. T. Ligthart, F.-C. Bidard, C. Decraene, T. Bachelot, S. Delaloge, E. Brain, M. Campone, P. Viens, J.-Y. Pierga, and L. W. M. M. Terstappen, Ann. Oncol. 24, 12311238 (2013).
http://dx.doi.org/10.1093/annonc/mds625
31.
31. C. Fütterer, N. Minc, V. Bormuth, J.-H. Codarbox, P. Laval, J. Rossier, and J.-L. Viovy, Lab Chip 4, 351356 (2004).
http://dx.doi.org/10.1039/b316729a
32.
32. L. Chau, M. Doran, and J. Cooper-White, Lab Chip 9, 18971902 (2009).
http://dx.doi.org/10.1039/b823180j
33.
33. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nat. Biotechnol. 21, 4146 (2002).
http://dx.doi.org/10.1038/nbt764
34.
34. A. J. Nahmias, R. J. Whitley, A. N. Visintine, Y. Takei, and C. A. Alford, J. Infect. Dis. 145, 829836 (1982).
http://dx.doi.org/10.1093/infdis/145.6.829
35.
35. A. Vincent-Salomon, F. C. Bidard, and J. Y. Pierga, J. Clin. Pathol. 61, 570576 (2008).
http://dx.doi.org/10.1136/jcp.2007.046649
36.
36. F. Farace, C. Massard, N. Vimond, F. Drusch, N. Jacques, F. Billiot, a Laplanche, a Chauchereau, L. Lacroix, D. Planchard, S. Le Moulec, F. André, K. Fizazi, J. C. Soria, and P. Vielh, Br. J. Cancer 105, 847853 (2011).
http://dx.doi.org/10.1038/bjc.2011.294
37.
37. M. F. Press, L. Bernstein, P. A. Thomas, L. F. Meisner, J. Y. Zhou, Y. Ma, G. Hung, R. A. Robinson, C. Harris, A. El-Naggar, D. J. Slamon, R. N. Phillips, J. S. Ross, S. R. Wolman, and K. J. Flom, J. Clin. Oncol. 15, 28942904 (1997).
38.
38. A. C. Wolff, M. E. H. Hammond, J. N. Schwartz, K. L. Hagerty, D. C. Allred, R. J. Cote, M. Dowsett, P. L. Fitzgibbons, W. M. Hanna, A. Langer, L. M. McShane, S. Paik, M. D. Pegram, E. A. Perez, M. F. Press, A. Rhodes, C. Sturgeon, S. E. Taube, R. Tubbs, G. H. Vance, M. van de Vijver, T. M. Wheeler, and D. F. Hayes, J. Clin. Oncol. 25, 118145 (2006).
http://dx.doi.org/10.1200/JCO.2006.09.2775
39.
39. J. Sibarita, Microsc. Res. Tech. 95, 201243 (2005).
http://dx.doi.org/10.1007/b102215
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/2/10.1063/1.4871035
Loading
/content/aip/journal/bmf/8/2/10.1063/1.4871035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/2/10.1063/1.4871035
2014-04-07
2015-08-28

Abstract

We present a low cost microfluidic chip integrating 3D micro-chambers for the capture and the analysis of cells. This device has a simple design and a small footprint. It allows the implementation of standard biological protocols in a chip format with low volume consumption. The manufacturing process relies on hot-embossing of cyclo olefin copolymer, allowing the development of a low cost and robust device. A 3D design of microchannels was used to induce high flow velocity contrasts in the device and provide a selective immobilization. In narrow distribution channels, the liquid velocity induces a shear stress that overcomes adhesion forces and prevents cell immobilization or clogging. In large 3D chambers, the liquid velocity drops down below the threshold for cell attachment. The devices can be operated in a large range of input pressures and can even be handled manually using simple syringe or micropipette. Even at high flow injection rates, the 3D structures protect the captured cell from shear stress. To validate the performances of our device, we implemented immuno-fluorescence labeling and Fluorescence Hybridization (FISH) analysis on cancer cell lines and on a patient pleural effusion sample. FISH is a Food and Drug Administration approved cancer diagnostic technique that provides quantitative information about gene and chromosome aberration at the single cell level. It is usually considered as a long and fastidious test in medical diagnosis. This process can be easily implanted in our platform, and high resolution fluorescence imaging can be performed with reduced time and computer intensiveness. These results demonstrate the potential of this chip as a low cost, robust, and versatile tool adapted to complex and demanding protocols for medical diagnosis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/2/1.4871035.html;jsessionid=2m2uproni58mn.x-aip-live-03?itemId=/content/aip/journal/bmf/8/2/10.1063/1.4871035&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A three dimensional thermoplastic microfluidic chip for robust cell capture and high resolution imaging
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/2/10.1063/1.4871035
10.1063/1.4871035
SEARCH_EXPAND_ITEM