Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. A. Sundberg, Curr. Opin. Biotechnol. 11, 4753 (2000).
2. M. Ouyang, H. Huang, N. C. Shaner, A. G. Remacle, S. A. Shiryaev, A. Y. Strongin, R. Y. Tsien, and Y. Wang, Cancer Res. 70, 22042212 (2010).
3. J. M. Irish, R. Hovland, P. O. Krutzik, O. D. Perez, Ø. Bruserud, B. T. Gjertsen, and G. P. Nolan, Cell 118, 217228 (2004).
4. A. J. Dickinson, P. M. Armistead, and N. L. Allbritton, Anal. Chem. 85, 47974804 (2013).
5. S.-K. Fan, P.-W. Huang, T.-T. Wang, and Y.-H. Peng, Lab Chip 8, 13251331 (2008).
6. A. Zarrine-Afsar and S. N. Krylov, Anal. Chem. 75, 37203724 (2003).
7. X. Li, Y. Chen, and P. C. H. Li, Lab Chip 11, 13781384 (2011).
8. D. D. Carlo and L. P. Lee, Anal. Chem. 78, 79187925 (2006).
9. C. E. Sims and N. L. Allbritton, Lab Chip 7, 423440 (2007).
10. Y. Yuhua, C. Jianfeng, and Z. Jia, J. Micromech. Microeng. 24, 015020 (2014).
11. L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, Nat. Protoc. 8, 870891 (2013).
12. J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, and D. A. Weitz, Proc. Natl. Acad. Sci. 107, 40044009 (2010).
13. J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Angew. Chem., Int. Ed. 48, 59085911 (2009).
14. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, and H. Duan, Chem. Biol. 15, 427437 (2008).
15. A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A. J. deMello, and J. B. Edel, Chem. Commun. 2007, 12181220.
16. Z. Liu and H. C. Shum, Biomicrofluidics 7, 044117 (2013).
17. M. Srisa-Art, A. J. deMello, and J. B. Edel, Anal. Chem. 79, 66826689 (2007).
18. A. Huebner, L. F. Olguin, D. Bratton, G. Whyte, W. T. S. Huck, A. J. de Mello, J. B. Edel, C. Abell, and F. Hollfelder, Anal. Chem. 80, 38903896 (2008).
19. D. T. Chiu and R. M. Lorenz, Acc. Chem. Res. 42, 649658 (2009).
20. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, Proc. Natl. Acad. Sci. 106, 1419514200 (2009).
21. G. D. Jeffries, R. M. Lorenz, and D. T. Chiu, Anal. Chem. 82, 99489954 (2010).
22. P. Mary, A. Chen, I. Chen, A. R. Abate, and D. A. Weitz, Lab Chip 11, 20662070 (2011).
23. D. J. Eastburn, A. Sciambi, and A. R. Abate, Anal. Chem. 85, 80168021 (2013).
24. P. Mary, A. R. Abate, J. J. Agresti, and D. A. Weitz, Biomicrofluidics 5, 024101 (2011).
25. A. R. Abate, C.-H. Chen, J. J. Agresti, and D. A. Weitz, Lab Chip 9, 26282631 (2009).
26. J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, Lab Chip 8, 12621264 (2008).
27. E. W. Kemna, R. M. Schoeman, F. Wolbers, I. Vermes, D. A. Weitz, and A. van den Berg, Lab Chip 12, 28812887 (2012).
28. M. Chabert and J.-L. Viovy, Proc. Natl. Acad. Sci. 105, 31913196 (2008).
29. L. Weiss, Cancer Metastasis Rev. 19, 351379 (2000).
30. G. V. Scagliotti, G. Selvaggi, S. Novello, and F. R. Hirsch, Clin. Cancer Res. 10, 4227s4232s (2004).
31. M. Hanawa, S. Suzuki, Y. Dobashi, T. Yamane, K. Kono, N. Enomoto, and A. Ooi, Int. J. Cancer 118, 11731180 (2006).
32. R. K. Jaiswal, N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R. Marshak, and M. F. Pittenger, J. Biol. Chem. 275, 96459652 (2000).
33. P. J. Stork and J. M. Schmitt, Trends Cell Biol. 12, 258266 (2002).
34. B. I. Terman, M. Dougher-Vermazen, M. E. Carrion, D. Dimitrov, D. C. Armellino, D. Gospodarowicz, and P. Böhlen, Biochem. Biophys. Res. Commun. 187, 15791586 (1992).
35. L. C. Cantley, Sci. Signaling 296, 1655 (2002).
36. E. Lukovic, J. A. González-Vera, and B. Imperiali, J. Am. Chem. Soc. 130, 1282112827 (2008).
37. M. D. Shults and B. Imperiali, J. Am. Chem. Soc. 125, 1424814249 (2003).
38. M. A. Lemmon and J. Schlessinger, Cell 141, 11171134 (2010).
39. R. Ramji and P. Roy, Microfluid. Nanofluid. 15, 99107 (2013).
40. C. Holtze, A. Rowat, J. Agresti, J. Hutchison, F. Angile, C. Schmitz, S. Köster, H. Duan, K. Humphry, and R. Scanga, Lab Chip 8, 16321639 (2008).
41. R.-C. Luo, S. Ranjan, Y. Zhang, and C.-H. Chen, Chem. Commun. 49, 78877889 (2013).
42. R. Ramji, A. Xiang, N. Ying, L. Teck, and C. Hung, J. Biosens. Bioelectron. S12, 2 (2012).
43. J.-S. Park, S.-H. Song, and H.-I. Jung, Lab Chip 9, 939948 (2009).
44. A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, Lab Chip 11, 18701878 (2011).
45.See supplementary material at for simulation of fluidic dynamics in the micro-channels, for droplet size characterization according to the flow rates, for the power spectrum of the intensity time trace, for the bulk well. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd