Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/3/10.1063/1.4878635
1.
1. S. A. Sundberg, Curr. Opin. Biotechnol. 11, 4753 (2000).
http://dx.doi.org/10.1016/S0958-1669(99)00051-8
2.
2. M. Ouyang, H. Huang, N. C. Shaner, A. G. Remacle, S. A. Shiryaev, A. Y. Strongin, R. Y. Tsien, and Y. Wang, Cancer Res. 70, 22042212 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-3698
3.
3. J. M. Irish, R. Hovland, P. O. Krutzik, O. D. Perez, Ø. Bruserud, B. T. Gjertsen, and G. P. Nolan, Cell 118, 217228 (2004).
http://dx.doi.org/10.1016/j.cell.2004.06.028
4.
4. A. J. Dickinson, P. M. Armistead, and N. L. Allbritton, Anal. Chem. 85, 47974804 (2013).
http://dx.doi.org/10.1021/ac4005887
5.
5. S.-K. Fan, P.-W. Huang, T.-T. Wang, and Y.-H. Peng, Lab Chip 8, 13251331 (2008).
http://dx.doi.org/10.1039/b803204a
6.
6. A. Zarrine-Afsar and S. N. Krylov, Anal. Chem. 75, 37203724 (2003).
http://dx.doi.org/10.1021/ac034463+
7.
7. X. Li, Y. Chen, and P. C. H. Li, Lab Chip 11, 13781384 (2011).
http://dx.doi.org/10.1039/c0lc00626b
8.
8. D. D. Carlo and L. P. Lee, Anal. Chem. 78, 79187925 (2006).
http://dx.doi.org/10.1021/ac069490p
9.
9. C. E. Sims and N. L. Allbritton, Lab Chip 7, 423440 (2007).
http://dx.doi.org/10.1039/b615235j
10.
10. Y. Yuhua, C. Jianfeng, and Z. Jia, J. Micromech. Microeng. 24, 015020 (2014).
http://dx.doi.org/10.1088/0960-1317/24/1/015020
11.
11. L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, Nat. Protoc. 8, 870891 (2013).
http://dx.doi.org/10.1038/nprot.2013.046
12.
12. J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, and D. A. Weitz, Proc. Natl. Acad. Sci. 107, 40044009 (2010).
http://dx.doi.org/10.1073/pnas.0910781107
13.
13. J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Angew. Chem., Int. Ed. 48, 59085911 (2009).
http://dx.doi.org/10.1002/anie.200901550
14.
14. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, and H. Duan, Chem. Biol. 15, 427437 (2008).
http://dx.doi.org/10.1016/j.chembiol.2008.04.004
15.
15. A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A. J. deMello, and J. B. Edel, Chem. Commun. 2007, 12181220.
http://dx.doi.org/10.1039/B618570C
16.
16. Z. Liu and H. C. Shum, Biomicrofluidics 7, 044117 (2013).
http://dx.doi.org/10.1063/1.4817769
17.
17. M. Srisa-Art, A. J. deMello, and J. B. Edel, Anal. Chem. 79, 66826689 (2007).
http://dx.doi.org/10.1021/ac070987o
18.
18. A. Huebner, L. F. Olguin, D. Bratton, G. Whyte, W. T. S. Huck, A. J. de Mello, J. B. Edel, C. Abell, and F. Hollfelder, Anal. Chem. 80, 38903896 (2008).
http://dx.doi.org/10.1021/ac800338z
19.
19. D. T. Chiu and R. M. Lorenz, Acc. Chem. Res. 42, 649658 (2009).
http://dx.doi.org/10.1021/ar8002464
20.
20. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, Proc. Natl. Acad. Sci. 106, 1419514200 (2009).
http://dx.doi.org/10.1073/pnas.0903542106
21.
21. G. D. Jeffries, R. M. Lorenz, and D. T. Chiu, Anal. Chem. 82, 99489954 (2010).
http://dx.doi.org/10.1021/ac102173m
22.
22. P. Mary, A. Chen, I. Chen, A. R. Abate, and D. A. Weitz, Lab Chip 11, 20662070 (2011).
http://dx.doi.org/10.1039/c1lc20159j
23.
23. D. J. Eastburn, A. Sciambi, and A. R. Abate, Anal. Chem. 85, 80168021 (2013).
http://dx.doi.org/10.1021/ac402057q
24.
24. P. Mary, A. R. Abate, J. J. Agresti, and D. A. Weitz, Biomicrofluidics 5, 024101 (2011).
http://dx.doi.org/10.1063/1.3576934
25.
25. A. R. Abate, C.-H. Chen, J. J. Agresti, and D. A. Weitz, Lab Chip 9, 26282631 (2009).
http://dx.doi.org/10.1039/b909386a
26.
26. J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, Lab Chip 8, 12621264 (2008).
http://dx.doi.org/10.1039/b805456h
27.
27. E. W. Kemna, R. M. Schoeman, F. Wolbers, I. Vermes, D. A. Weitz, and A. van den Berg, Lab Chip 12, 28812887 (2012).
http://dx.doi.org/10.1039/c2lc00013j
28.
28. M. Chabert and J.-L. Viovy, Proc. Natl. Acad. Sci. 105, 31913196 (2008).
http://dx.doi.org/10.1073/pnas.0708321105
29.
29. L. Weiss, Cancer Metastasis Rev. 19, 351379 (2000).
http://dx.doi.org/10.1023/A:1010619010296
30.
30. G. V. Scagliotti, G. Selvaggi, S. Novello, and F. R. Hirsch, Clin. Cancer Res. 10, 4227s4232s (2004).
http://dx.doi.org/10.1158/1078-0432.CCR-040007
31.
31. M. Hanawa, S. Suzuki, Y. Dobashi, T. Yamane, K. Kono, N. Enomoto, and A. Ooi, Int. J. Cancer 118, 11731180 (2006).
http://dx.doi.org/10.1002/ijc.21454
32.
32. R. K. Jaiswal, N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R. Marshak, and M. F. Pittenger, J. Biol. Chem. 275, 96459652 (2000).
http://dx.doi.org/10.1074/jbc.275.13.9645
33.
33. P. J. Stork and J. M. Schmitt, Trends Cell Biol. 12, 258266 (2002).
http://dx.doi.org/10.1016/S0962-8924(02)02294-8
34.
34. B. I. Terman, M. Dougher-Vermazen, M. E. Carrion, D. Dimitrov, D. C. Armellino, D. Gospodarowicz, and P. Böhlen, Biochem. Biophys. Res. Commun. 187, 15791586 (1992).
http://dx.doi.org/10.1016/0006-291X(92)90483-2
35.
35. L. C. Cantley, Sci. Signaling 296, 1655 (2002).
36.
36. E. Lukovic, J. A. González-Vera, and B. Imperiali, J. Am. Chem. Soc. 130, 1282112827 (2008).
http://dx.doi.org/10.1021/ja8046188
37.
37. M. D. Shults and B. Imperiali, J. Am. Chem. Soc. 125, 1424814249 (2003).
http://dx.doi.org/10.1021/ja0380502
38.
38. M. A. Lemmon and J. Schlessinger, Cell 141, 11171134 (2010).
http://dx.doi.org/10.1016/j.cell.2010.06.011
39.
39. R. Ramji and P. Roy, Microfluid. Nanofluid. 15, 99107 (2013).
http://dx.doi.org/10.1007/s10404-012-1125-1
40.
40. C. Holtze, A. Rowat, J. Agresti, J. Hutchison, F. Angile, C. Schmitz, S. Köster, H. Duan, K. Humphry, and R. Scanga, Lab Chip 8, 16321639 (2008).
http://dx.doi.org/10.1039/b806706f
41.
41. R.-C. Luo, S. Ranjan, Y. Zhang, and C.-H. Chen, Chem. Commun. 49, 78877889 (2013).
http://dx.doi.org/10.1039/c3cc44111c
42.
42. R. Ramji, A. Xiang, N. Ying, L. Teck, and C. Hung, J. Biosens. Bioelectron. S12, 2 (2012).
http://dx.doi.org/10.4172/2155-6210.S12-001
43.
43. J.-S. Park, S.-H. Song, and H.-I. Jung, Lab Chip 9, 939948 (2009).
http://dx.doi.org/10.1039/b813952k
44.
44. A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, Lab Chip 11, 18701878 (2011).
http://dx.doi.org/10.1039/c0lc00633e
45.
45.See supplementary material at http://dx.doi.org/10.1063/1.4878635 for simulation of fluidic dynamics in the micro-channels, for droplet size characterization according to the flow rates, for the power spectrum of the intensity time trace, for the bulk well. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/3/10.1063/1.4878635
Loading
/content/aip/journal/bmf/8/3/10.1063/1.4878635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/3/10.1063/1.4878635
2014-05-19
2016-12-08

Abstract

Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/3/1.4878635.html;jsessionid=3M9m_7Hc9gow8ARARs06Prdi.x-aip-live-06?itemId=/content/aip/journal/bmf/8/3/10.1063/1.4878635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/8/3/10.1063/1.4878635&pageURL=http://scitation.aip.org/content/aip/journal/bmf/8/3/10.1063/1.4878635'
Right1,Right2,Right3,