Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/3/10.1063/1.4883855
1.
1. A. H. C. Ng, U. Uddayasankar, and A. R. Wheeler, Anal. Bioanal. Chem. 397(3), 991 (2010).
http://dx.doi.org/10.1007/s00216-010-3678-8
2.
2. J. El-Ali, P. K. Sorger, and K. F. Jensen, Nature 442(7101), 403 (2006).
http://dx.doi.org/10.1038/nature05063
3.
3. G. M. Whitesides, Nature 442(7101), 368 (2006).
http://dx.doi.org/10.1038/nature05058
4.
4. L. Y. Yeo, H.-C. Chang, P. P. Y. Chan, and J. R. Friend, Small 7(1), 12 (2011).
http://dx.doi.org/10.1002/smll.201000946
5.
5. U. Dharmasiri, M. A. Witek, A. A. Adams, and S. A. Soper, in Annual Review of Analytical Chemistry, edited by E. S. Yeung and R. N. Zare (Annual Reviews, Palo Alto, CA, 2010), Vol. 3, p. 409.
6.
6. H. Yun, K. Kim, and W. G. Lee, Biofabrication 5(2), 022001 (2013).
http://dx.doi.org/10.1088/1758-5082/5/2/022001
7.
7. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36(13), R167 (2003).
http://dx.doi.org/10.1088/0022-3727/36/13/201
8.
8. M. A. M. Gijs, F. Lacharme, and U. Lehmann, Chem. Rev. 110(3), 1518 (2010).
http://dx.doi.org/10.1021/cr9001929
9.
9. N. Pamme, Lab Chip 6(1), 24 (2006).
http://dx.doi.org/10.1039/b513005k
10.
10. A. Sofla, B. Cirkovic, A. Hsieh, J. W. Miklas, N. Filipovic, and M. Radisic, Biomicrofluidics 7(1), 014110 (2013).
http://dx.doi.org/10.1063/1.4791649
11.
11. O. Osman, S. Toru, F. Dumas-Bouchiat, N. M. Dempsey, N. Haddour, L. F. Zanini, F. Buret, G. Reyne, and M. Frenea-Robin, Biomicrofluidics 7(5), 054115 (2013).
http://dx.doi.org/10.1063/1.4825395
12.
12. J. Darabi and C. Guo, Biomicrofluidics 7(5), 054106 (2013).
http://dx.doi.org/10.1063/1.4821628
13.
13. D. W. Inglis, R. Riehn, R. H. Austin, and J. C. Sturm, Appl. Phys. Lett. 85(21), 5093 (2004).
http://dx.doi.org/10.1063/1.1823015
14.
14. C. P. Gooneratne and J. Kosel, in Proceedings of the 2012 Sixth International Conference on Sensing Technology (IEEE, 2012), p. 97.
15.
15. S. Anandakumar, V. S. Rani, S. Oh, B. L. Sinha, M. Takahashi, and C. Kim, Biosens. Bioelectron. 26(4), 1755 (2010).
http://dx.doi.org/10.1016/j.bios.2010.08.033
16.
16. Y. Morimoto, M. Abe, M. Hatakayama, H. Handa, and A. Sandhu, IEEE Trans. Magn. 45(6), 2871 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2018861
17.
17. E. Rapoport, D. Montana, and G. S. D. Beach, Lab Chip 12(21), 4433 (2012).
http://dx.doi.org/10.1039/c2lc40715a
18.
18. M. Donolato, P. Vavassori, M. Gobbi, M. Deryabina, M. F. Hansen, V. Metlushko, B. Ilic, M. Cantoni, D. Petti, S. Brivio, and R. Bertacco, Adv. Mater. 22(24), 2706 (2010).
http://dx.doi.org/10.1002/adma.201000146
19.
19. D. L. Graham, H. A. Ferreira, N. Feliciano, P. P. Freitas, L. A. Clarke, and M. D. Amaral, Sens. Actuators, B 107(2), 936 (2005).
http://dx.doi.org/10.1016/j.snb.2004.12.071
20.
20. C. Derec, C. Wilhelm, J. Servais, and J.-C. Bacri, Microfluid Nanofluid 8(1), 123 (2010).
http://dx.doi.org/10.1007/s10404-009-0486-6
21.
21. H. Lee, A. M. Purdon, and R. M. Westervelt, IEEE Trans. Magn. 40(4), 2991 (2004).
http://dx.doi.org/10.1109/TMAG.2004.829179
22.
22. R. Wirix-Speetjens, W. Fyen, K. D. Xu, J. D. Boeck, and G. Borghs, IEEE Trans. Magn. 41(10), 4128 (2005).
http://dx.doi.org/10.1109/TMAG.2005.855345
23.
23. J. S. Beveridge, J. R. Stephens, A. H. Latham, and M. E. Williams, Anal. Chem. 81(23), 9618 (2009).
http://dx.doi.org/10.1021/ac9016456
24.
24. R. C. Chaves, D. Bensimon, and P. P. Freitas, J. Appl. Phys. 109(6), 064702 (2011).
http://dx.doi.org/10.1063/1.3560853
25.
25. G. Kokkinis, F. Keplinger, and I. Giouroudi, Biomicrofluidics 7(5), 054117 (2013).
http://dx.doi.org/10.1063/1.4826546
26.
26. C. P. Gooneratne, C. Liang, I. Giouroudi, and J. Kosel, J. Appl. Phys. 111(7), 07B327 (2012).
http://dx.doi.org/10.1063/1.3678303
27.
27. C. P. Gooneratne, C. Liang, and J. Kosel, Microelectron. Eng. 88(8), 1757 (2011).
http://dx.doi.org/10.1016/j.mee.2010.12.068
28.
28. C. P. Gooneratne, I. Giouroudi, C. Liang, and J. Kosel, J. Appl. Phys. 109(7), 07E517 (2011).
http://dx.doi.org/10.1063/1.3536822
29.
29. C. P. Gooneratne, I. Giouroudi, and J. Kosel, Sens. Lett. 10(3–4), 770 (2012).
http://dx.doi.org/10.1166/sl.2012.2583
30.
30. F. Li, C. Gooneratne, and J. Kosel, Magnetic Biosensor System to Detect Biological Targets (IEEE, Piscataway, NJ, 2012), p. 1238.
31.
31. F. Li, I. Giouroudi, and J. Kosel, J. Appl. Phys. 111(7), 07B328 (2012).
http://dx.doi.org/10.1063/1.3678304
32.
32. I. Giouroudi, S. van den Driesche, J. Kosel, R. Groessinger, and M. J. Vellekoop, J. Appl. Phys. 109(7), 07B304 (2011).
http://dx.doi.org/10.1063/1.3556952
33.
33. F. Li and J. Kosel, IEEE Trans. Magn. 48(11), 2854 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2202644
34.
34. C. P. Gooneratne, I. Giouroudi, and J. Kosel, in Advancement in Sensing Technology, edited by S. C. Mukhopadhyay, K. P. Jayasundera, and A. Fuchs (Springer, Berlin, Heidelberg, 2013), Vol. 1, p. 121.
35.
35. C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, J. Appl. Phys. 105(10), 102014 (2009).
http://dx.doi.org/10.1063/1.3116091
36.
36. M. Schneider and H. Hoffmann, J. Appl. Phys. 86(8), 4539 (1999).
http://dx.doi.org/10.1063/1.371399
37.
37. J. F. Smyth, S. Schultz, D. Kern, H. Schmid, and D. Yee, J. Appl. Phys. 63(8), 4237 (1988).
http://dx.doi.org/10.1063/1.340217
38.
38. G. Gubbiotti, G. Carlotti, F. Nizzoli, R. Zivieri, T. Okuno, and T. Shinjo, IEEE Trans. Magn. 38(5), 2532 (2002).
http://dx.doi.org/10.1109/TMAG.2002.801920
39.
39. Y. B. Grebenshchikov and N. A. Usov, J. Appl. Phys. 93(8), 4810 (2003).
http://dx.doi.org/10.1063/1.1559635
40.
40. N. Kikuchi, S. Okamoto, O. Kitakami, Y. Shimada, S. G. Kim, Y. Otani, and K. Fukamichi, IEEE Trans. Magn. 37(4), 2082 (2001).
http://dx.doi.org/10.1109/20.951060
41.
41. D. Dimitrov, I. Halianov, J. Kassabov, and S. Marinov, J. Phys.: Condens. Matter 5(9), 1257 (1993).
http://dx.doi.org/10.1088/0953-8984/5/9/010
42.
42. A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fernandez-Gubieda, and G. V. Kurlyandskaya, IEEE Trans. Magn. 46(2), 333 (2010).
http://dx.doi.org/10.1109/TMAG.2009.2032519
43.
43. F. L. Calderon, T. Stora, O. M. Monval, P. Poulin, and J. Bibette, Phys. Rev. Lett. 72(18), 2959 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2959
44.
44. M. S. Wang, L. He, and Y. D. Yin, Mater. Today 16(4), 110 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.04.008
45.
45. S. I. Tu, J. Uknalis, D. Patterson, and A. G. Gehring, J. Rapid Methods Autom. Microbiol. 6(4), 259 (1998).
http://dx.doi.org/10.1111/j.1745-4581.1998.tb00207.x
46.
46. A. van Reenen, Y. Gao, A. H. Bos, A. M. de Jong, M. A. Hulsen, J. M. J. den Toonder, and M. W. J. Prins, Appl. Phys. Lett. 103(4), 043704 (2013).
http://dx.doi.org/10.1063/1.4816429
47.
47. K. van Ommering, C. C. H. Lamers, J. H. Nieuwenhuis, L. J. van Ijzendoorn, and M. W. J. Prins, J. Appl. Phys. 105(10), 104905 (2009).
http://dx.doi.org/10.1063/1.3118500
48.
48. O. Yassine, P. Morin, O. Dispagne, L. Renaud, L. Denoroy, P. Kleimann, K. Faure, J. L. Rocca, N. Ouaini, and R. Ferrigno, Anal. Chim. Acta 609(2), 215 (2008).
http://dx.doi.org/10.1016/j.aca.2007.12.045
49.
49. L. Renaud, O. Yassine, P. Kleimann, A. L. Deman, J. F. Chateaux, P. Morin, N. Ouaini, and R. Ferrigno, Exp. Heat Transfer 23(1), 63 (2009).
http://dx.doi.org/10.1080/08916150903402740
50.
50. K. Faure, M. Bias, O. Yassine, N. Delaunay, G. Cretier, M. Albert, and J. L. Rocca, Electrophoresis 28(11), 1668 (2007).
http://dx.doi.org/10.1002/elps.200600566
51.
51. J. A. Osborn, Phys. Rev. 67(11–1), 351 (1945).
http://dx.doi.org/10.1103/PhysRev.67.351
52.
52. Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. C. Lagomarsino, and K. D. Dorfman, Lab Chip 13(5), 947 (2013).
http://dx.doi.org/10.1039/c2lc41196b
53.
53. H. Lu, L. Y. Koo, W. C. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen, Anal. Chem. 76(18), 5257 (2004).
http://dx.doi.org/10.1021/ac049837t
54.
54. S. Wang, F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. Ip, B. Sridharan, U. A. Gurkan, and U. Demirci, Int. J. Nanomed. 7, 2591 (2012).
http://dx.doi.org/10.2147/IJN.S29629
55.
55. T. Sikanen, S. K. Wiedmer, L. Heikkila, S. Franssila, R. Kostiainen, and T. Kotiaho, Electrophoresis 31(15), 2566 (2010).
http://dx.doi.org/10.1002/elps.201000130
56.
56. R. N. Zare and S. Kim, Ann. Rev. Biomed. Eng. 12, 187 (2010).
http://dx.doi.org/10.1146/annurev-bioeng-070909-105238
57.
57. G. T. Roman, K. McDaniel, and C. T. Culbertson, Analyst 131(2), 194 (2006).
http://dx.doi.org/10.1039/b510765b
58.
58. J. Heo, K. J. Thomas, G. H. Seong, and R. M. Crooks, Anal. Chem. 75(1), 22 (2003).
http://dx.doi.org/10.1021/ac0259717
59.
59. S. Lutz, P. Weber, M. Focke, B. Faltin, J. Hoffmann, C. Muller, D. Mark, G. Roth, P. Munday, N. Armes, O. Piepenburg, R. Zengerle, and F. von Stetten, Lab Chip 10(7), 887 (2010).
http://dx.doi.org/10.1039/b921140c
60.
60. I. Wong and C. M. Ho, Microfluid Nanofluid 7(3), 291 (2009).
http://dx.doi.org/10.1007/s10404-009-0443-4
61.
61. W. G. Cox and V. L. Singer, J. Histochem. Cytochem. 47(11), 1443 (1999).
http://dx.doi.org/10.1177/002215549904701110
62.
62.See supplementary material at http://dx.doi.org/10.1063/1.4883855 for fluorescent images showing the growth of E. coli. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/3/10.1063/1.4883855
Loading
/content/aip/journal/bmf/8/3/10.1063/1.4883855
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/3/10.1063/1.4883855
2014-06-16
2016-12-02

Abstract

This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with (K12 strand) tagged with 2.8 m SPBs. The results showed that can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/3/1.4883855.html;jsessionid=C19uOPzQNejYrTr4W0JsOZdT.x-aip-live-03?itemId=/content/aip/journal/bmf/8/3/10.1063/1.4883855&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/8/3/10.1063/1.4883855&pageURL=http://scitation.aip.org/content/aip/journal/bmf/8/3/10.1063/1.4883855'
Right1,Right2,Right3,