Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. C. Ng, U. Uddayasankar, and A. R. Wheeler, Anal. Bioanal. Chem. 397(3), 991 (2010).
2. J. El-Ali, P. K. Sorger, and K. F. Jensen, Nature 442(7101), 403 (2006).
3. G. M. Whitesides, Nature 442(7101), 368 (2006).
4. L. Y. Yeo, H.-C. Chang, P. P. Y. Chan, and J. R. Friend, Small 7(1), 12 (2011).
5. U. Dharmasiri, M. A. Witek, A. A. Adams, and S. A. Soper, in Annual Review of Analytical Chemistry, edited by E. S. Yeung and R. N. Zare (Annual Reviews, Palo Alto, CA, 2010), Vol. 3, p. 409.
6. H. Yun, K. Kim, and W. G. Lee, Biofabrication 5(2), 022001 (2013).
7. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36(13), R167 (2003).
8. M. A. M. Gijs, F. Lacharme, and U. Lehmann, Chem. Rev. 110(3), 1518 (2010).
9. N. Pamme, Lab Chip 6(1), 24 (2006).
10. A. Sofla, B. Cirkovic, A. Hsieh, J. W. Miklas, N. Filipovic, and M. Radisic, Biomicrofluidics 7(1), 014110 (2013).
11. O. Osman, S. Toru, F. Dumas-Bouchiat, N. M. Dempsey, N. Haddour, L. F. Zanini, F. Buret, G. Reyne, and M. Frenea-Robin, Biomicrofluidics 7(5), 054115 (2013).
12. J. Darabi and C. Guo, Biomicrofluidics 7(5), 054106 (2013).
13. D. W. Inglis, R. Riehn, R. H. Austin, and J. C. Sturm, Appl. Phys. Lett. 85(21), 5093 (2004).
14. C. P. Gooneratne and J. Kosel, in Proceedings of the 2012 Sixth International Conference on Sensing Technology (IEEE, 2012), p. 97.
15. S. Anandakumar, V. S. Rani, S. Oh, B. L. Sinha, M. Takahashi, and C. Kim, Biosens. Bioelectron. 26(4), 1755 (2010).
16. Y. Morimoto, M. Abe, M. Hatakayama, H. Handa, and A. Sandhu, IEEE Trans. Magn. 45(6), 2871 (2009).
17. E. Rapoport, D. Montana, and G. S. D. Beach, Lab Chip 12(21), 4433 (2012).
18. M. Donolato, P. Vavassori, M. Gobbi, M. Deryabina, M. F. Hansen, V. Metlushko, B. Ilic, M. Cantoni, D. Petti, S. Brivio, and R. Bertacco, Adv. Mater. 22(24), 2706 (2010).
19. D. L. Graham, H. A. Ferreira, N. Feliciano, P. P. Freitas, L. A. Clarke, and M. D. Amaral, Sens. Actuators, B 107(2), 936 (2005).
20. C. Derec, C. Wilhelm, J. Servais, and J.-C. Bacri, Microfluid Nanofluid 8(1), 123 (2010).
21. H. Lee, A. M. Purdon, and R. M. Westervelt, IEEE Trans. Magn. 40(4), 2991 (2004).
22. R. Wirix-Speetjens, W. Fyen, K. D. Xu, J. D. Boeck, and G. Borghs, IEEE Trans. Magn. 41(10), 4128 (2005).
23. J. S. Beveridge, J. R. Stephens, A. H. Latham, and M. E. Williams, Anal. Chem. 81(23), 9618 (2009).
24. R. C. Chaves, D. Bensimon, and P. P. Freitas, J. Appl. Phys. 109(6), 064702 (2011).
25. G. Kokkinis, F. Keplinger, and I. Giouroudi, Biomicrofluidics 7(5), 054117 (2013).
26. C. P. Gooneratne, C. Liang, I. Giouroudi, and J. Kosel, J. Appl. Phys. 111(7), 07B327 (2012).
27. C. P. Gooneratne, C. Liang, and J. Kosel, Microelectron. Eng. 88(8), 1757 (2011).
28. C. P. Gooneratne, I. Giouroudi, C. Liang, and J. Kosel, J. Appl. Phys. 109(7), 07E517 (2011).
29. C. P. Gooneratne, I. Giouroudi, and J. Kosel, Sens. Lett. 10(3–4), 770 (2012).
30. F. Li, C. Gooneratne, and J. Kosel, Magnetic Biosensor System to Detect Biological Targets (IEEE, Piscataway, NJ, 2012), p. 1238.
31. F. Li, I. Giouroudi, and J. Kosel, J. Appl. Phys. 111(7), 07B328 (2012).
32. I. Giouroudi, S. van den Driesche, J. Kosel, R. Groessinger, and M. J. Vellekoop, J. Appl. Phys. 109(7), 07B304 (2011).
33. F. Li and J. Kosel, IEEE Trans. Magn. 48(11), 2854 (2012).
34. C. P. Gooneratne, I. Giouroudi, and J. Kosel, in Advancement in Sensing Technology, edited by S. C. Mukhopadhyay, K. P. Jayasundera, and A. Fuchs (Springer, Berlin, Heidelberg, 2013), Vol. 1, p. 121.
35. C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, J. Appl. Phys. 105(10), 102014 (2009).
36. M. Schneider and H. Hoffmann, J. Appl. Phys. 86(8), 4539 (1999).
37. J. F. Smyth, S. Schultz, D. Kern, H. Schmid, and D. Yee, J. Appl. Phys. 63(8), 4237 (1988).
38. G. Gubbiotti, G. Carlotti, F. Nizzoli, R. Zivieri, T. Okuno, and T. Shinjo, IEEE Trans. Magn. 38(5), 2532 (2002).
39. Y. B. Grebenshchikov and N. A. Usov, J. Appl. Phys. 93(8), 4810 (2003).
40. N. Kikuchi, S. Okamoto, O. Kitakami, Y. Shimada, S. G. Kim, Y. Otani, and K. Fukamichi, IEEE Trans. Magn. 37(4), 2082 (2001).
41. D. Dimitrov, I. Halianov, J. Kassabov, and S. Marinov, J. Phys.: Condens. Matter 5(9), 1257 (1993).
42. A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fernandez-Gubieda, and G. V. Kurlyandskaya, IEEE Trans. Magn. 46(2), 333 (2010).
43. F. L. Calderon, T. Stora, O. M. Monval, P. Poulin, and J. Bibette, Phys. Rev. Lett. 72(18), 2959 (1994).
44. M. S. Wang, L. He, and Y. D. Yin, Mater. Today 16(4), 110 (2013).
45. S. I. Tu, J. Uknalis, D. Patterson, and A. G. Gehring, J. Rapid Methods Autom. Microbiol. 6(4), 259 (1998).
46. A. van Reenen, Y. Gao, A. H. Bos, A. M. de Jong, M. A. Hulsen, J. M. J. den Toonder, and M. W. J. Prins, Appl. Phys. Lett. 103(4), 043704 (2013).
47. K. van Ommering, C. C. H. Lamers, J. H. Nieuwenhuis, L. J. van Ijzendoorn, and M. W. J. Prins, J. Appl. Phys. 105(10), 104905 (2009).
48. O. Yassine, P. Morin, O. Dispagne, L. Renaud, L. Denoroy, P. Kleimann, K. Faure, J. L. Rocca, N. Ouaini, and R. Ferrigno, Anal. Chim. Acta 609(2), 215 (2008).
49. L. Renaud, O. Yassine, P. Kleimann, A. L. Deman, J. F. Chateaux, P. Morin, N. Ouaini, and R. Ferrigno, Exp. Heat Transfer 23(1), 63 (2009).
50. K. Faure, M. Bias, O. Yassine, N. Delaunay, G. Cretier, M. Albert, and J. L. Rocca, Electrophoresis 28(11), 1668 (2007).
51. J. A. Osborn, Phys. Rev. 67(11–1), 351 (1945).
52. Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. C. Lagomarsino, and K. D. Dorfman, Lab Chip 13(5), 947 (2013).
53. H. Lu, L. Y. Koo, W. C. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen, Anal. Chem. 76(18), 5257 (2004).
54. S. Wang, F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. Ip, B. Sridharan, U. A. Gurkan, and U. Demirci, Int. J. Nanomed. 7, 2591 (2012).
55. T. Sikanen, S. K. Wiedmer, L. Heikkila, S. Franssila, R. Kostiainen, and T. Kotiaho, Electrophoresis 31(15), 2566 (2010).
56. R. N. Zare and S. Kim, Ann. Rev. Biomed. Eng. 12, 187 (2010).
57. G. T. Roman, K. McDaniel, and C. T. Culbertson, Analyst 131(2), 194 (2006).
58. J. Heo, K. J. Thomas, G. H. Seong, and R. M. Crooks, Anal. Chem. 75(1), 22 (2003).
59. S. Lutz, P. Weber, M. Focke, B. Faltin, J. Hoffmann, C. Muller, D. Mark, G. Roth, P. Munday, N. Armes, O. Piepenburg, R. Zengerle, and F. von Stetten, Lab Chip 10(7), 887 (2010).
60. I. Wong and C. M. Ho, Microfluid Nanofluid 7(3), 291 (2009).
61. W. G. Cox and V. L. Singer, J. Histochem. Cytochem. 47(11), 1443 (1999).
62.See supplementary material at for fluorescent images showing the growth of E. coli. [Supplementary Material]

Data & Media loading...


Article metrics loading...



This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with (K12 strand) tagged with 2.8 m SPBs. The results showed that can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd