1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/3/10.1063/1.4884519
1.
1. T. Charrier et al., “ A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: Technical development and proof of concept of the biosensor,” Anal. Bioanal. Chem. 400(4), 10611070 (2011).
http://dx.doi.org/10.1007/s00216-010-4354-8
2.
2. J. Stocker et al., “ Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water,” Environ. Sci. Technol. 37(20), 47434750 (2003).
http://dx.doi.org/10.1021/es034258b
3.
3. M. F. Siddiqui et al., “ Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer,” J. Biotechnol. 161(3), 190197 (2012).
http://dx.doi.org/10.1016/j.jbiotec.2012.06.029
4.
4. J. R. van der Meer and S. Belkin, “ Where microbiology meets microengineering: Design and applications of reporter bacteria,” Nat. Rev. Microbiol. 8(7), 511522 (2010).
http://dx.doi.org/10.1038/nrmicro2392
5.
5. R. D. Whitaker et al., “ Single cell time-resolved quorum responses reveal dependence on cell density and configuration,” J. Biol. Chem. 286(24), 2162321632 (2011).
http://dx.doi.org/10.1074/jbc.M111.239897
6.
6. A. Meyer et al., “ Dynamics of AHL mediated quorum sensing under flow and non-flow conditions,” Phys. Biol. 9(2), 026007 (2012).
http://dx.doi.org/10.1088/1478-3975/9/2/026007
7.
7. A. Groisman et al., “ A microfluidic chemostat for experiments with bacterial and yeast cells,” Nat. Methods 2(9), 685689 (2005).
http://dx.doi.org/10.1038/nmeth784
8.
8. S. Park et al., “ Microfabricated ratchet structure integrated concentrator arrays for synthetic bacterial cell-to-cell communication assays,” Lab Chip 12(20), 39143922 (2012).
http://dx.doi.org/10.1039/c2lc40294g
9.
9. T. Danino et al., “ A synchronized quorum of genetic clocks,” Nature 463(7279), 326330 (2010).
http://dx.doi.org/10.1038/nature08753
10.
10. A. Prindle et al., “ A sensing array of radically coupled genetic ‘biopixels',” Nature 481(7379), 3944 (2012).
http://dx.doi.org/10.1038/nature10722
11.
11. A. V. Hill, “ The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients,” J. Physiol. 39(5), 361373 (1909).
12.
12. L. Michaelis and M. M. Menten, “ The kinetics of invertin action,” FEBS Lett. 587(17), 27122720 (2013).
http://dx.doi.org/10.1016/j.febslet.2013.07.015
13.
13. F. Horn and R. Jackson, “ General mass action kinetics,” Arch. Ration. Mech. Anal. 47(2), 81 (1972).
http://dx.doi.org/10.1007/BF00251225
14.
14. J. H. Leveau and S. E. Lindow, “ Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria,” J. Bacteriol. 183(23), 67526762 (2001).
http://dx.doi.org/10.1128/JB.183.23.6752-6762.2001
15.
15. S. Zucca et al., “ Characterization of an inducible promoter in different DNA copy number conditions,” BMC Bioinf. 13(Suppl 4), S11 (2012).
http://dx.doi.org/10.1186/1471-2105-13-S4-S11
16.
16. C. Garde et al., “ Quorum sensing regulation in Aeromonas hydrophila,” J. Mol. Biol. 396(4), 849857 (2010).
http://dx.doi.org/10.1016/j.jmb.2010.01.002
17.
17. M. Weber and J. Buceta, “ Dynamics of the quorum sensing switch: Stochastic and non-stationary effects,” BMC Syst. Biol. 7, 6 (2013).
http://dx.doi.org/10.1186/1752-0509-7-6
18.
18. S. Basu et al., “ A synthetic multicellular system for programmed pattern formation,” Nature 434(7037), 11301134 (2005).
http://dx.doi.org/10.1038/nature03461
19.
19. A. Park et al., “ Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel,” BioChip J. 5(3), 236241 (2011).
http://dx.doi.org/10.1007/s13206-011-5307-9
20.
20. H. L. Vieira, P. Freire, and C. M. Arraiano, “ Effect of Escherichia coli morphogene bolA on biofilms,” Appl. Environ. Microbiol. 70(9), 56825684 (2004).
http://dx.doi.org/10.1128/AEM.70.9.5682-5684.2004
21.
21. P. S. Stewart, “ Diffusion in biofilms,” J. Bacteriol. 185(5), 14851491 (2003).
http://dx.doi.org/10.1128/JB.185.5.1485-1491.2003
22.
22. J. R. Lawrence, G. M. Wolfaardt, and D. R. Korber, “ Determination of diffusion-coefficients in biofilms by confocal laser microscopy,” Appl. Environ. Microbiol. 60(4), 11661173 (1994).
23.
23. J. D. Bryers and F. Drummond, “ Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP),” Biotechnol. Bioeng. 60(4), 462473 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0290(19981120)60:4<462::AID-BIT8>3.0.CO;2-K
24.
24. S. G. Charati and S. A. Stern, “ Diffusion of gases in silicone polymers: Molecular dynamics simulations,” Macromolecules 31(16), 55295535 (1998).
http://dx.doi.org/10.1021/ma980387e
25.
25. M. Losen et al., “ Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures,” Biotechnol. Progr. 20(4), 10621068 (2004).
http://dx.doi.org/10.1021/bp034282t
26.
26. R. Y. Tsien, “ The green fluorescent protein,” Annu. Rev. Biochem. 67, 509544 (1998).
http://dx.doi.org/10.1146/annurev.biochem.67.1.509
27.
27. T. D. Craggs, “ Green fluorescent protein: Structure, folding, and chromophore maturation,” Chem. Soc. Rev. 38(10), 28652875 (2009).
http://dx.doi.org/10.1039/b903641p
28.
28. R. Iizuka, M. Yamagishi-Shirasaki, and T. Funatsu, “ Kinetic study of de novo chromophore maturation of fluorescent proteins,” Anal. Biochem. 414(2), 173178 (2011).
http://dx.doi.org/10.1016/j.ab.2011.03.036
29.
29. B. Krishnaswamy et al., “ Time-elapse communication: Bacterial communication on a microfluidic chip,” IEEE Trans. Commun. 61(12), 51395151 (2013);
http://dx.doi.org/10.1109/TCOMM.2013.111013.130314
29. B. Krishnaswamy et al., “ When bacteria talk: Time elapse communication for super-slow networks,” in 2013 IEEE International Conference on Communications (ICC) (IEEE, 2013).
http://dx.doi.org/10.1109/ICC.2013.6655625
30.
30. P. V. Dunlap, “ Quorum regulation of luminescence in Vibrio fischeri,” J. Mol. Microbiol. Biotechnol. 1(1), 512 (1999).
31.
31. L. Chong, “ Molecular cloning - A laboratory manual, 3rd edition,” Science 292(5516), 446446 (2001).
http://dx.doi.org/10.1126/science.1060677
32.
32. F. R. Blattner et al., “ The complete genome sequence of Escherichia coli K-12,” Science 277(5331), 1453 (1997).
http://dx.doi.org/10.1126/science.277.5331.1453
33.
33. J. B. Andersen et al., “ New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria,” Appl. Environ. Microbiol. 64(6), 22402246 (1998).
34.
34. J. C. McDonald et al., “ Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 2740 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
35.
35. P. Nilsson et al., “ Kinetics of the AHL regulatory system in a model biofilm system: How many bacteria constitute a ‘quorum’?,” J. Mol. Biol. 309(3), 631640 (2001).
http://dx.doi.org/10.1006/jmbi.2001.4697
36.
36. R. H. Byrd, M. E. Hribar, and J. Nocedal, “ An interior point algorithm for large-scale nonlinear programming,” SIAM J. Optim. 9(4), 877900 (1999).
http://dx.doi.org/10.1137/S1052623497325107
37.
37. I. F. Akyildiz et al., “ Monaco: Fundamentals of molecular nano-communication networks,” IEEE Wireless Commun. 19(5), 1218 (2012).
http://dx.doi.org/10.1109/MWC.2012.6339467
38.
38. M. Pierobon and I. F. Akyildiz, “ Capacity of a diffusion-based molecular communication system with channel memory and molecular noise,” IEEE Trans. Inf. Theory 59(2), 942954 (2013).
http://dx.doi.org/10.1109/TIT.2012.2219496
39.
39. Y. Tanouchi et al., “ Noise reduction by diffusional dissipation in a minimal quorum sensing motif,” PLoS Comput. Biol. 4(8), e1000167 (2008).
http://dx.doi.org/10.1371/journal.pcbi.1000167
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/3/10.1063/1.4884519
Loading
/content/aip/journal/bmf/8/3/10.1063/1.4884519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/3/10.1063/1.4884519
2014-06-17
2015-04-21

Abstract

Biosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models. We report a mathematical model that accurately predicts the biological response of the autoinducer N-acyl homoserine lactone-mediated green fluorescent protein expression in reporter bacteria in microfluidic environments by accommodating these rate constants. This generalized mass action model considers a chain of biomolecular events from input autoinducer chemical to fluorescent protein expression through a series of six chemical species. We have validated this model against experimental data from our own apparatus as well as prior published experimental results. Results indicate accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and with reduced mean-squared error with pulse or step inputs for a range of concentrations (10 M–30 M). This model can help advance the design of genetically engineered bacteria sensors and molecular communication devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/3/1.4884519.html;jsessionid=1rmnnqpyck4dj.x-aip-live-02?itemId=/content/aip/journal/bmf/8/3/10.1063/1.4884519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modeling and validation of autoinducer-mediated bacterial gene expression in microfluidic environments
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/3/10.1063/1.4884519
10.1063/1.4884519
SEARCH_EXPAND_ITEM