1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/8/4/10.1063/1.4881355
1.
1. S. Corrsin, Phys. Fluids 1, 42 (1958).
http://dx.doi.org/10.1063/1.1724335
2.
2. P. Danckwerts, Chem. Eng. Sci. 8, 93 (1958).
http://dx.doi.org/10.1016/0009-2509(58)80040-8
3.
3. G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).
http://dx.doi.org/10.1017/S002211205900009X
4.
4. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).
http://dx.doi.org/10.1017/S0022112062000518
5.
5. J. Schumacher and K. R. Sreenivasan, Phys. Fluids 17, 125107 (2005).
http://dx.doi.org/10.1063/1.2140024
6.
6. F. Schwertfirm and M. Manhart, I. J. Heat Fluid Flow 28, 1204 (2007).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.05.012
7.
7. J. Baldyga and J. R. Bourne, Turbulent Mixing and Chemical Reactions (Wiley, New York, 1999).
8.
8. V. Zhdanov and A. Chorny, Int. J. Heat Mass Transfer 54, 3245 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.006
9.
9. J. Baldyga, J. R. Bourne, and B. Walker, Can. J. Chem. Eng. 76, 641 (1998).
http://dx.doi.org/10.1002/cjce.5450760336
10.
10. J. R. Bourne and S. Yu, Ind. Eng. Chem. Res. 33, 41 (1994).
http://dx.doi.org/10.1021/ie00025a007
11.
11. B. K. Johnson and R. K. Prud'homme, AIChE J. 49, 2264 (2003).
http://dx.doi.org/10.1002/aic.690490905
12.
12. Y. Liu, C. Cheng, Y. Liu, R. K. Prud'homme, and R. O. Fox, Chem. Eng. Sci. 63, 2829 (2008).
http://dx.doi.org/10.1016/j.ces.2007.10.020
13.
13. Y. Liu and R. O. Fox, AIChE J. 52, 731 (2006).
http://dx.doi.org/10.1002/aic.10633
14.
14. A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).
http://dx.doi.org/10.1063/1.1678401
15.
15. W. J. A. Dahm and P. E. Dimotakis, AIAA J. 25, 1216 (1987).
http://dx.doi.org/10.2514/3.9770
16.
16. F. Guillard, R. Fritzon, J. Revstedt, C. Tragardh, M. Alden, and L. Fuchs, Exp. Fluids 25, 143 (1998).
http://dx.doi.org/10.1007/s003480050218
17.
17. Y. Liu, H. Feng, M. G. Olsen, R. O. Fox, and J. C. Hill, Chem. Eng. Sci. 61, 6946 (2006).
http://dx.doi.org/10.1016/j.ces.2006.07.011
18.
18. A. W. Law and H. Wang, Exp. Therm. Fluid Sci. 22, 213 (2000).
http://dx.doi.org/10.1016/S0894-1777(00)00029-7
19.
19. J. P. Crimaldi and J. R. Koseff, Exp. Fluids 31, 90 (2001).
http://dx.doi.org/10.1007/s003480000263
20.
20. H. Feng, M. G. Olsen, J. C. Hill, and R. O. Fox, Exp. Fluids 42, 847 (2007).
http://dx.doi.org/10.1007/s00348-007-0265-7
21.
21. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, Science 295, 647 (2002).
http://dx.doi.org/10.1126/science.1066238
22.
22. H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
23.
23. M. Hoffmann, M. Schluter, and N. Rabiger, Chem. Eng. Sci. 61, 2968 (2006).
http://dx.doi.org/10.1016/j.ces.2005.11.029
24.
24. T. Tofteberg, M. Skolimowski, E. Andreassen, and O. Geschke, Microfluid. Nanofluid. 8, 209 (2010).
http://dx.doi.org/10.1007/s10404-009-0456-z
25.
25. Y. Shi, R. O. Fox, and M. G. Olsen, Appl. Phys. Lett. 99, 204103 (2011).
http://dx.doi.org/10.1063/1.3662042
26.
26. B. K. Johnson and R. K. Prud'homme, Aust. J. Chem. 56, 1021 (2003).
http://dx.doi.org/10.1071/CH03115
27.
27. Y. Liu, Z. Tong, and R. K. Prud'homme, Pest Manage. Sci. 64, 808 (2008).
http://dx.doi.org/10.1002/ps.1566
28.
28. H. Shen, S. Hong, R. K. Prud'homme, and Y. Liu, J. Nanopart. Res. 13, 4109 (2011).
http://dx.doi.org/10.1007/s11051-011-0354-7
29.
29. D. Horn and J. Rieger, Angew. Chem. Int. Ed. 40, 4330 (2001).
http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W
30.
30. H. C. Schwarzer and W. Peukert, Chem. Eng. Technol. 25, 657 (2002).
http://dx.doi.org/10.1002/1521-4125(200206)25:6<657::AID-CEAT657>3.0.CO;2-5
31.
31. M. E. Gindy, A. Z. Panagiotopoulos, and R. K. Prud'homme, Langmuir 24, 83 (2008).
http://dx.doi.org/10.1021/la702902b
32.
32. S. Marre and K. F. Jensen, Chem. Soc. Rev. 39, 1183 (2010).
http://dx.doi.org/10.1039/b821324k
33.
33. M. E. Matteucii, M. A. Hotze, K. P. Johnston, and R. O. Williams, Langmuir 22, 8951 (2006).
http://dx.doi.org/10.1021/la061122t
34.
34. J. C. Cheng, M. G. Olsen, and R. O. Fox, Appl. Phys. Lett. 94, 204104 (2009).
http://dx.doi.org/10.1063/1.3125428
35.
35. Y. Shi, J. C. Cheng, R. O. Fox, and M. G. Olsen, J. Micromech. Microeng. 23, 075005 (2013).
http://dx.doi.org/10.1088/0960-1317/23/7/075005
36.
36. R. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, J. Microelectromech. Syst. 9, 190 (2000).
http://dx.doi.org/10.1109/84.846699
37.
37. Y. Shi, V. Somashekar, R. O. Fox, and M. G. Olsen, J. Micromech. Microeng. 21, 115006 (2011).
http://dx.doi.org/10.1088/0960-1317/21/11/115006
38.
38. Z. Zhu, K. Margulis-Goshen, S. Magdassi, Y. Talmon, and C. W. Macosko, J. Pharm. Sci. 99, 4295 (2010).
http://dx.doi.org/10.1002/jps.22090
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4881355
Loading
/content/aip/journal/bmf/8/4/10.1063/1.4881355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/4/10.1063/1.4881355
2014-07-03
2014-07-31

Abstract

A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal -LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar -LIF, the reactive -LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Re = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Re = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Re = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Re = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Re = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive -LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within microscale chemical reactors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/4/1.4881355.html;jsessionid=1fzyoyvg7h0q0.x-aip-live-02?itemId=/content/aip/journal/bmf/8/4/10.1063/1.4881355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4881355
10.1063/1.4881355
SEARCH_EXPAND_ITEM