Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/4/10.1063/1.4885840
1.
1. P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, Nat. Immunol. 15(2 ), 128135 (2014).
http://dx.doi.org/10.1038/ni.2796
2.
2. X. Cheng, D. Irimia, M. Dixon, J. C. Ziperstein, U. Demirci, L. Zamir, R. G. Tompkins, M. Toner, and W. R. Rodriguez, J. Acquir. Immune Defic. Syndr. 45(3 ), 257261 (2007).
http://dx.doi.org/10.1097/QAI.0b013e3180500303
3.
3. J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, Anal. Chim. Acta 649(2 ), 141157 (2009).
http://dx.doi.org/10.1016/j.aca.2009.07.017
4.
4. J. Voldman, Annu. Rev. Biomed. Eng. 8, 425454 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
5.
5. C. W. Shields IV, L. M. Johnson, L. Gao, and G. P. López, Langmuir 30(14 ), 39233927 (2014).
http://dx.doi.org/10.1021/la404677w
6.
6. C. W. Shields IV, D. Sun, K. A. Johnson, K. A. Duval, A. V. Rodriguez, L. Gao, P. A. Dayton, and G. P. López, “Nucleation and growth synthesis of siloxane gels to form functional, monodisperse, and acoustically programmable particles,” Angew. Chem. Int. Ed. Engl. (published online) (2014).
http://dx.doi.org/10.1002/anie.201402471
7.
7. P. Tseng, J. W. Judy, and D. Di Carlo, Nat. Methods 9(11 ), 11131119 (2012).
http://dx.doi.org/10.1038/nmeth.2210
8.
8. B. B. Yellen, G. Friedman, and A. Feinerman, J. Appl. Phys. 91(10 ), 8552 (2002).
http://dx.doi.org/10.1063/1.1453951
9.
9. B. B. Yellen, G. Friedman, and A. Feinerman, J. Appl. Phys. 93(10 ), 7331 (2003).
http://dx.doi.org/10.1063/1.1555908
10.
10. B. B. Yellen and G. Friedman, J. Appl. Phys. 93(10 ), 8447 (2003).
http://dx.doi.org/10.1063/1.1543134
11.
11. B. B. Yellen and G. Friedman, Adv. Mater. 16(2 ), 111115 (2004).
http://dx.doi.org/10.1002/adma.200305603
12.
12. B. B. Yellen and G. Friedman, Langmuir 20, 25532559 (2004).
http://dx.doi.org/10.1021/la0352016
13.
13. B. B. Yellen, O. Hovorka, and G. Friedman, Proc. Natl. Acad. Sci. U.S.A. 102(25 ), 88608864 (2005).
http://dx.doi.org/10.1073/pnas.0500409102
14.
14. F. S. Fritzsch, C. Dusny, O. Frick, and A. Schmid, Annu. Rev. Chem. Biomol. Eng. 3, 129155 (2012).
http://dx.doi.org/10.1146/annurev-chembioeng-062011-081056
15.
15. Y. Chen, P. Li, P. H. Huang, Y. Xie, J. D. Mai, L. Wang, N. T. Nguyen, and T. J. Huang, Lab Chip 14(4 ), 626645 (2014).
http://dx.doi.org/10.1039/c3lc90136j
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4885840 for methods of microchip fabrication, isolation purity of CD3+ cells, and capture efficiency data of the magnetographic array. [Supplementary Material]
17.
17. D. A. Cooper, B. Tindall, E. J. Wilson, A. A. Imrie, and R. Penny, J. Infect. Dis. 157(5 ), 889896 (1988).
http://dx.doi.org/10.1093/infdis/157.5.889
18.
18. S. Serrano-Villar, S. Moreno, M. Fuentes-Ferrer, C. Sánchez-Marcos, M. Ávila, T. Sainz, N. G. P. de Villar, A. Fernández-Cruz, and V. Estrada, HIV Med. 15(1 ), 4049 (2014).
http://dx.doi.org/10.1111/hiv.12081
19.
19. C. W. Shields IV, S. Zhu, Y. Yang, B. Bharti, J. Liu, B. B. Yellen, O. D. Velev, and G. P. López, Soft Matter 9(38 ), 9219 (2013).
http://dx.doi.org/10.1039/c3sm51119g
20.
20. M. Sen, K. Ino, J. Ramon-Azcon, H. Shiku, and T. Matsue, Lab Chip 13(18 ), 36503652 (2013).
http://dx.doi.org/10.1039/c3lc50561h
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4885840
Loading
/content/aip/journal/bmf/8/4/10.1063/1.4885840
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/4/10.1063/1.4885840
2014-07-01
2016-12-04

Abstract

We present a simple microchip device consisting of an overlaid pattern of micromagnets and microwells capable of capturing magnetically labeled cells into well-defined compartments (with accuracies >95%). Its flexible design permits the programmable deposition of single cells for their direct enumeration and pairs of cells for the detailed analysis of cell-cell interactions. This cell arraying device requires no external power and can be operated solely with permanent magnets. Large scale image analysis of cells captured in this array can yield valuable information (e.g., regarding various immune parameters such as the CD4:CD8 ratio) in a miniaturized and portable platform.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/4/1.4885840.html;jsessionid=lQUQ3AlklrLhre0X09_NQAdV.x-aip-live-06?itemId=/content/aip/journal/bmf/8/4/10.1063/1.4885840&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/8/4/10.1063/1.4885840&pageURL=http://scitation.aip.org/content/aip/journal/bmf/8/4/10.1063/1.4885840'
Right1,Right2,Right3,