Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/8/4/10.1063/1.4893914
1.
1. U. Hedin, J. Roy, and P. K. Tran, “ Control of smooth muscle cell proliferation in vascular disease,” Curr. Opin. Lipidol. 15, 559565 (2004).
http://dx.doi.org/10.1097/00041433-200410000-00010
2.
2. A. W. Clowes, M. M. Clowes, J. Fingerle, and M. A. Reidy, “ Regulation of smooth muscle cell growth in injured artery,” J. Cardiovasc. Pharmacol. 14, S12S15 (1989).
http://dx.doi.org/10.1097/00005344-198900146-00005
3.
3. E. Gillis, L. V. Laer, and B. L. Loeys, “ Genetics of thoracic aortic aneurysm: At the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility,” Circ. Res. 113, 327340 (2013).
http://dx.doi.org/10.1161/CIRCRESAHA.113.300675
4.
4. R. W. Thompson, S. Liao, and J. A. Curci, “ Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms,” Coron. Artery Dis. 8, 623631 (1997).
http://dx.doi.org/10.1097/00019501-199710000-00005
5.
5. A. Rudijanto, “ The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis,” Acta Medica Indonesiana 39, 8693 (2007).
6.
6. E. W. Raines and R. Ross, “ Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis,” British Heart J. 69, S30S37 (1993).
http://dx.doi.org/10.1136/hrt.69.1_Suppl.S30
7.
7. A. I. Gotlieb, “ Smooth muscle and endothelial cell function in the pathogenesis of atherosclerosis,” Can. Med. Assoc. J. 126, 903908 (1982).
8.
8. S. O. Marx, H. Totary-Jain, and A. R. Marks, “ Vascular smooth muscle cell proliferation in restenosis,” Circ.: Cardiovasc. Interventions 4, 104111 (2011).
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.957332
9.
9. V. Andres, “ Control of vascular smooth muscle cell growth and its implication in atherosclerosis and restenosis (review),” Int. J. Mol. Med. 2, 8189 (1998).
http://dx.doi.org/10.3892/ijmm.2.1.81
10.
10. D. Proudfoot and C. Shanahan, “ Human vascular smooth muscle cell culture,” Methods Mol. Biol. 806, 251263 (2012).
http://dx.doi.org/10.1007/978-1-61779-367-7_17
11.
11. M. Absher, J. Woodcock-Mitchell, J. Mitchell, L. Baldor, R. Low, and D. Warshaw, “ Characterization of vascular smooth muscle cell phenotype in long-term culture,” In Vitro Cell. Dev. Biol.: J. Tissue Cult. Assoc. 25, 183192 (1989).
http://dx.doi.org/10.1007/BF02626176
12.
12. G. M. Whitesides, “ The origins and the future of microfluidics,” Nature 442, 368373 (2006).
http://dx.doi.org/10.1038/nature05058
13.
13. R. C. Wootton and A. J. Demello, “ Microfluidics: Exploiting elephants in the room,” Nature 464, 839840 (2010).
http://dx.doi.org/10.1038/464839a
14.
14. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “ The present and future role of microfluidics in biomedical research,” Nature 507, 181189 (2014).
http://dx.doi.org/10.1038/nature13118
15.
15. E. W. Young and D. J. Beebe, “ Fundamentals of microfluidic cell culture in controlled microenvironments,” Chem. Soc. Rev. 39, 10361048 (2010).
http://dx.doi.org/10.1039/b909900j
16.
16. I. Meyvantsson and D. J. Beebe, “ Cell culture models in microfluidic systems,” Annu. Rev. Anal. Chem. 1, 423449 (2008).
http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042
17.
17. H. Ma, H. Xu, and J. Qin, “ Biomimetic tumor microenvironment on a microfluidic platform,” Biomicrofluidics 7, 11501 (2013).
http://dx.doi.org/10.1063/1.4774070
18.
18. D. Wlodkowic and J. M. Cooper, “ Tumors on chips: Oncology meets microfluidics,” Curr. Opin. Chem. Bio. 14, 556567 (2010).
http://dx.doi.org/10.1016/j.cbpa.2010.08.016
19.
19. A. K. Soe, S. Nahavandi, and K. Khoshmanesh, “ Neuroscience goes on a chip,” Biosens. Bioelectron. 35, 113 (2012).
http://dx.doi.org/10.1016/j.bios.2012.02.012
20.
20. K. H. Wong, J. M. Chan, R. D. Kamm, and J. Tien, “ Microfluidic models of vascular functions,” Annu. Rev. Biomed. Eng. 14, 205230 (2012).
http://dx.doi.org/10.1146/annurev-bioeng-071811-150052
21.
21. A. D. van der Meer, A. A. Poot, M. H. Duits, J. Feijen, and I. Vermes, “ Microfluidic technology in vascular research,” J. Biomed. Biotechnol. 2009, 823148 (2009).
http://dx.doi.org/10.1155/2009/823148
22.
22. A. Goessl, D. F. Bowen-Pope, and A. S. Hoffman, “ Control of shape and size of vascular smooth muscle cells in vitro by plasma lithography,” J. Biomed. Mater. Res. 57, 1524 (2001).
http://dx.doi.org/10.1002/1097-4636(200110)57:1<15::AID-JBM1136>3.0.CO;2-N
23.
23. R. G. Thakar, F. Ho, N. F. Huang, D. Liepmann, and S. Li, “ Regulation of vascular smooth muscle cells by micropatterning,” Biochem. Biophys. Res. Commun. 307, 883890 (2003).
http://dx.doi.org/10.1016/S0006-291X(03)01285-3
24.
24. A. Thapa, T. J. Webster, and K. M. Haberstroh, “ Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion,” J. Biomed. Mater. Res., Part A 67A, 13741383 (2003).
http://dx.doi.org/10.1002/jbm.a.20037
25.
25. D. C. Miller, A. Thapa, K. M. Haberstroh, and T. J. Webster, “ Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features,” Biomaterials 25, 5361 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00471-X
26.
26. N. Zaari, P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong, “ Photopolymerization in microfluidic gradient generators: Microscale control of substrate compliance to manipulate cell response,” Adv. Mater. 16, 21332137 (2004).
http://dx.doi.org/10.1002/adma.200400883
27.
27. J. D. Glawe, J. B. Hill, D. K. Mills, and M. J. McShane, “ Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds,” J. Biomed. Mater. Res., Part A 75A, 106114 (2005).
http://dx.doi.org/10.1002/jbm.a.30403
28.
28. S. Sarkar, M. Dadhania, P. Rourke, T. A. Desai, and J. Y. Wong, “ Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix,” Acta Biomater. 1, 93100 (2005).
http://dx.doi.org/10.1016/j.actbio.2004.08.003
29.
29. E. K. F. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, and K. W. Leong, “ Nanopattern-induced changes in morphology and motility of smooth muscle cells,” Biomaterials 26, 54055413 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.01.058
30.
30. J. Y. Shen, M. B. Chan-Park, Z. Q. Feng, V. Chan, and Z. W. Feng, “ UV-embossed microchannel in biocompatible polymeric film: Application to control of cell shape and orientation of muscle cells,” J. Biomed. Mater. Res., Part B 77B, 423430 (2006).
http://dx.doi.org/10.1002/jbm.b.30449
31.
31. J. Y. Shen, M. B. Chan-Park, B. He, A. P. Zhu, X. Zhu, R. W. Beuerman et al., “ Three-dimensional microchannels in biodegradable polymeric films for control orientation and phenotype of vascular smooth muscle cells,” Tissue Eng. 12, 22292240 (2006).
http://dx.doi.org/10.1089/ten.2006.12.2229
32.
32. J. Feng, M. B. Chan-Park, J. Shen, and V. Chan, “ Quick layer-by-layer assembly of aligned multilayers of vascular smooth muscle cells in deep microchannels,” Tissue Eng. 13, 10031012 (2007).
http://dx.doi.org/10.1089/ten.2006.0223
33.
33. B. D. Plouffe, D. N. Njoka, J. Harris, J. Liao, N. K. Horick, M. Radisic et al., “ Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow,” Langmuir 23, 50505055 (2007).
http://dx.doi.org/10.1021/la0700220
34.
34. S. Chung, R. Sudo, P. J. Mack, C.-R. Wan, V. Vickerman, and R. D. Kamm, “ Cell migration into scaffolds under co-culture conditions in a microfluidic platform,” Lab Chip 9, 269275 (2009).
http://dx.doi.org/10.1039/b807585a
35.
35. B. C. Isenberg, P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong, “ Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength,” Biophys. J. 97, 13131322 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.06.021
36.
36. R. G. Thakar, Q. Cheng, S. Patel, J. Chu, M. Nasir, D. Liepmann et al., “ Cell-shape regulation of smooth muscle cell proliferation,” Biophys. J. 96, 34233432 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.11.074
37.
37. Y. Cao, Y. F. Poon, J. Feng, S. Rayatpisheh, V. Chan, and M. B. Chan-Park, “ Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls,” Biomaterials 31, 62286238 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.04.059
38.
38. S. Rayatpisheh, Y. F. Poon, Y. Cao, J. Feng, V. Chan, and M. B. Chan-Park, “ Aligned 3D human aortic smooth muscle tissue via layer by layer technique inside microchannels with novel combination of collagen and oxidized alginate hydrogel,” J. Biomed. Mater. Res., Part A 98A, 235244 (2011).
http://dx.doi.org/10.1002/jbm.a.33085
39.
39. C. Williams, X. Q. Brown, E. Bartolak-Suki, H. Ma, A. Chilkoti, and J. Y. Wong, “ The use of micropatterning to control smooth muscle myosin heavy chain expression and limit the response to transforming growth factor β1 in vascular smooth muscle cells,” Biomaterials 32, 410418 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.08.105
40.
40. R. Rodriguez-Rodriguez, X. Munoz-Berbel, S. Demming, S. Buttgenbach, M. D. Herrera, and A. Llobera, “ Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells,” Biomed. Microdevices 14, 11291140 (2012).
http://dx.doi.org/10.1007/s10544-012-9679-y
41.
41. J. Li, K. Zhang, P. Yang, Y. Liao, L. Wu, J. Chen et al., “ Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface,” Exp. Cell Res. 319, 26632672 (2013).
http://dx.doi.org/10.1016/j.yexcr.2013.05.027
42.
42. J. S. Choi, Y. Piao, and T. S. Seo, “ Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel,” Biomaterials 35, 6370 (2014).
http://dx.doi.org/10.1016/j.biomaterials.2013.09.106
43.
43. Y. Zhang, S. S. Ng, Y. Wang, H. Feng, W. N. Chen, M. B. Chan-Park et al., “ Collective cell traction force analysis on aligned smooth muscle cell sheet between three-dimensional microwalls,” Interface Focus 4, 20130056 (2014).
http://dx.doi.org/10.1073/pnas.94.25.13661
44.
44. J. P. Puccinelli, X. Su, and D. J. Beebe, “ Automated high-throughput microchannel assays for cell biology: Operational optimization and characterization,” J. Assoc. Lab. Autom. 15, 2532 (2010).
http://dx.doi.org/10.1016/j.jala.2009.10.002
45.
45. I. Meyvantsson, J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe, “ Automated cell culture in high density tubeless microfluidic device arrays,” Lab Chip 8, 717724 (2008).
http://dx.doi.org/10.1039/b715375a
46.
46. G. Walker and D. J. Beebe, “ A passive pumping method for microfluidic devices,” Lab Chip 2, 131134 (2002).
http://dx.doi.org/10.1039/b204381e
47.
47. S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov et al., “ Patterning cells and their environments using multiple laminar fluid flows in capillary networks,” Proc. Natl. Acad. Sci. U. S. A. 96, 55455548 (1999).
http://dx.doi.org/10.1073/pnas.96.10.5545
48.
48. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “ Subcellular positioning of small molecules,” Nature 411, 1016 (2001).
http://dx.doi.org/10.1038/35082637
49.
49. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “ Selective chemical treatment of cellular microdomains using multiple laminar streams,” Chemistry and Biology 10, 123130 (2003).
http://dx.doi.org/10.1016/S1074-5521(03)00019-X
50.
50. P. L. Weissberg, N. R. Cary, and C. M. Shanahan, “ Gene expression and vascular smooth muscle cell phenotype,” Blood Pressure, Suppl. 2, 6873 (1995).
51.
51. I. P. Hayward, K. R. Bridle, G. R. Campbell, P. A. Underwood, and J. H. Campbell, “ Effect of extracellular matrix proteins on vascular smooth muscle cell phenotype,” Cell Biol. Int. 19, 839846 (1995).
http://dx.doi.org/10.1006/cbir.1995.1019
52.
52. J. P. Stegemann, H. Hong, and R. M. Nerem, “ Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype,” J. Appl. Physiol. 98, 23212327 (2005).
http://dx.doi.org/10.1152/japplphysiol.01114.2004
53.
53. H. Yu, I. Meyvantsson, I. A. Shkel, and D. J. Beebe, “ Diffusion dependent cell behavior in microenvironments,” Lab Chip 5, 10891095 (2005).
http://dx.doi.org/10.1039/b504403k
54.
54. E. Leclerc, Y. Sakai, and T. Fujii, “ Cell culture in 3-Dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdevices 5, 109114 (2003).
http://dx.doi.org/10.1023/A:1024583026925
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4893914
Loading
/content/aip/journal/bmf/8/4/10.1063/1.4893914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/4/10.1063/1.4893914
2014-08-25
2016-12-06

Abstract

This paper presents a microfluidic device enabling culture of vascular smooth muscle cells (VSMCs) where extracellular matrix coating, VSMC seeding, culture, and immunostaining are demonstrated in a tubing-free manner. By optimizing droplet volume differences between inlets and outlets of micro channels, VSMCs were evenly seeded into microfluidic devices. Furthermore, the effects of extracellular matrix (e.g., collagen, poly--Lysine (PLL), and fibronectin) on VSMC proliferation and phenotype expression were explored. As a platform technology, this microfluidic device may function as a new VSMC culture model enabling VSMC studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/4/1.4893914.html;jsessionid=ckvMAQGheziqMqIAzmoFnoLk.x-aip-live-02?itemId=/content/aip/journal/bmf/8/4/10.1063/1.4893914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/8/4/10.1063/1.4893914&pageURL=http://scitation.aip.org/content/aip/journal/bmf/8/4/10.1063/1.4893914'
Right1,Right2,Right3,