1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/8/4/10.1063/1.4894275
1.
1. D. Liu, R. K. Perdue, L. Sun, and R. M. Crooks, Langmuir 20, 5905 (2004).
http://dx.doi.org/10.1021/la049605p
2.
2. S. E. Fosdick, K. N. Knust, K. Scida, and R. M. Crooks, Angew. Chem. Int. Ed. Engl. 52, 10438 (2013).
http://dx.doi.org/10.1002/anie.201300947
3.
3. W. R. Vandaveer, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, Electrophoresis 25, 3528 (2004).
http://dx.doi.org/10.1002/elps.200406115
4.
4. R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, Anal. Chem. 72, 3196 (2000).
http://dx.doi.org/10.1021/ac000160t
5.
5. K. Ueno, H.-B. Kim, and N. Kitamura, Anal. Chem. 75, 2086 (2003).
http://dx.doi.org/10.1021/ac0264675
6.
6. L. Rassaei, K. Mathwig, E. D. Goluch, and S. G. Lemay, J. Phys. Chem. C 116, 10913 (2012).
http://dx.doi.org/10.1021/jp2118696
7.
7. C. Ma, N. M. Contento, L. R. Gibson, and P. W. Bohn, ACS Nano 7, 5483 (2013).
http://dx.doi.org/10.1021/nn401542x
8.
8. D. W. M. Arrigan, Analyst 129, 1157 (2004).
http://dx.doi.org/10.1039/b415395m
9.
9. K. Dawson, A. Wahl, R. Murphy, and A. O'Riordan, J. Phys. Chem. C 116, 14665 (2012).
http://dx.doi.org/10.1021/jp302967p
10.
10. B. Zhang, Y. Zhang, and H. S. White, Anal. Chem. 76, 6229 (2004).
http://dx.doi.org/10.1021/ac049288r
11.
11. D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss, Nat. Biotechnol. 26, 1146 (2008).
http://dx.doi.org/10.1038/nbt.1495
12.
12. S. P. Branagan, N. M. Contento, and P. W. Bohn, J. Am. Chem. Soc. 134, 8617 (2012).
http://dx.doi.org/10.1021/ja3017158
13.
13. M. Pumera, A. Merkoçi, and S. Alegret, TrAC, Trends Anal. Chem. 25, 219 (2006).
http://dx.doi.org/10.1016/j.trac.2005.08.005
14.
14. R. V. Jones, L. Godorhazy, N. Varga, D. Szalay, L. Urge, and F. Darvas, J. Comb. Chem. 8, 110 (2006).
http://dx.doi.org/10.1021/cc050107o
15.
15. N. M. Contento, S. P. Branagan, and P. W. Bohn, Lab Chip 11, 3634 (2011).
http://dx.doi.org/10.1039/c1lc20570f
16.
16. L. Rassaei and F. Marken, Anal. Chem. 82, 7063 (2010).
http://dx.doi.org/10.1021/ac101303s
17.
17. H. Zhou, G. Li, and S. Yao, Lab Chip 14, 1917 (2014).
http://dx.doi.org/10.1039/c3lc51442k
18.
18. F. Mavré, R. K. Anand, D. R. Laws, K.-F. Chow, B.-Y. Chang, J. A. Crooks, and R. M. Crooks, Anal. Chem. 82, 8766 (2010).
http://dx.doi.org/10.1021/ac101262v
19.
19. W. Wei, G. Xue, and E. Yeung, Anal. Chem. 74, 934 (2002).
http://dx.doi.org/10.1021/ac015617t
20.
20. A. Persat, M. E. Suss, and J. G. Santiago, Lab Chip 9, 2454 (2009).
http://dx.doi.org/10.1039/b906468k
21.
21. L. J. Cheng and H. C. Chang, Biomicrofluidics 5, 46502 (2011).
http://dx.doi.org/10.1063/1.3657928
22.
22. L.-J. Cheng and H.-C. Chang, Lab Chip 14, 979 (2014).
http://dx.doi.org/10.1039/c3lc51023a
23.
23. E. O. Gabrielsson, K. Tybrandt, and M. Berggren, Lab Chip 12, 2507 (2012).
http://dx.doi.org/10.1039/c2lc40093f
24.
24. R. G. Compton, A. C. Fisher, R. G. Wellington, P. J. Dobson, and P. A. Leigh, J. Phys. Chem. 97, 10410 (1993).
http://dx.doi.org/10.1021/j100142a024
25.
25. C. Amatore, N. Da Mota, C. Sella, and L. Thouin, Anal. Chem. 79, 8502 (2007).
http://dx.doi.org/10.1021/ac070971y
26.
26. I. Dumitrescu, D. F. Yancey, and R. M. Crooks, Lab Chip 12, 986 (2012).
http://dx.doi.org/10.1039/c2lc21181e
27.
27. E. Bitziou, M. E. Snowden, M. B. Joseph, S. J. Leigh, J. A. Covington, J. V. Macpherson, and P. R. Unwin, J. Electroanal. Chem. 692, 72 (2013).
http://dx.doi.org/10.1016/j.jelechem.2012.12.014
28.
28. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998).
http://dx.doi.org/10.1021/ac980656z
29.
29. T. Merkel, V. Bondar, K. Nagai, B. Freeman, and I. Pinnau, J. Polym. Sci., Part B 38, 415 (2000).
http://dx.doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
30.
30. V. G. Levich, Physicochemical Hydrodynamics ( Prentice-Hall, Englewood Cliffs, NJ, 1962).
31.
31. A. Schumpe, I. Adler, and W. Deckwer, Biotechnol. Bioeng. 20, 145 (1978).
http://dx.doi.org/10.1002/bit.260200114
32.
32. G. W. Hung and R. H. Dinius, J. Chem. Eng. Data 17, 449 (1972).
http://dx.doi.org/10.1021/je60055a001
33.
33. S. M. Mitrovski and R. G. Nuzzo, Lab Chip 5, 634 (2005).
http://dx.doi.org/10.1039/B416671J
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4894275 for details on finite element simulations and pH calculations.[Supplementary Material]
35.
35. W. Sheng, H. A. Gasteiger, and Y. Shao-Horn, J. Electrochem. Soc. 157, B1529 (2010).
http://dx.doi.org/10.1149/1.3483106
36.
36. J. M. Mayer and I. J. Rhile, Biochim. Biophys. Acta, Bioenerg. 1655, 51 (2004).
http://dx.doi.org/10.1016/j.bbabio.2003.07.002
37.
37. D. H. Vans and D. A. Griffith, J. Electroanal. Chem. Interfacial Electrochem. 134, 301 (1982).
http://dx.doi.org/10.1016/0022-0728(82)80008-9
38.
38. E. Laviron and J. Electroanal, Chem. Interfacial Electrochem. 164, 213 (1984).
http://dx.doi.org/10.1016/S0022-0728(84)80207-7
39.
39. S. I. Bailey, I. M. Ritchie, and F. R. Hewgill, J. Chem. Soc. Perkin Trans. 2, 645 (1983).
http://dx.doi.org/10.1039/p29830000645
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4894275
Loading
/content/aip/journal/bmf/8/4/10.1063/1.4894275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/8/4/10.1063/1.4894275
2014-08-28
2014-09-21

Abstract

Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (HO) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/8/4/1.4894275.html;jsessionid=8frcbc1t1bsql.x-aip-live-03?itemId=/content/aip/journal/bmf/8/4/10.1063/1.4894275&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone
http://aip.metastore.ingenta.com/content/aip/journal/bmf/8/4/10.1063/1.4894275
10.1063/1.4894275
SEARCH_EXPAND_ITEM