Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/2/10.1063/1.4917508
1.
1. B. Obermeier, R. Daneman, and R. M. Ransohoff, Nat. Med. 19, 1584 (2013).
http://dx.doi.org/10.1038/nm.3407
2.
2. N. J. Abbott, J. Anat. 200, 523 (2002).
http://dx.doi.org/10.1046/j.1469-7580.2002.00047_13.x
3.
3. N. J. Abbott, L. Rönnbäck, and E. Hansson, Nat. Rev. Neurosci. 7, 41 (2006).
http://dx.doi.org/10.1038/nrn1824
4.
4. S. H. Ma, L. A. Lepak, R. J. Hussain, W. Shain, and M. L. Shuler, Lab Chip 5, 74 (2005).
http://dx.doi.org/10.1039/b405713a
5.
5. I. Wilhelm, C. Fazakas, and I. A. Krizbai, Acta Neurobiol. Exp. 71, 113 (2011).
6.
6. A. Armulik, G. Genove, M. Mae, M. H. Nisancioglu, E. Wallgard, C. Niaudet, L. Q. He, J. Norlin, P. Lindblom, K. Strittmatter, B. R. Johansson, and C. Betsholtz, Nature 468, 557 (2010).
http://dx.doi.org/10.1038/nature09522
7.
7. O. B. Paulson, Eur. Neuropsychopharmacol. 12, 495 (2002).
http://dx.doi.org/10.1016/S0924-977X(02)00098-6
8.
8. A. Prat, K. Biernacki, K. Wosik, and J. P. Antel, Glia 36, 145 (2001).
http://dx.doi.org/10.1002/glia.1104
9.
9. K. E. Sandoval and K. A. Witt, Neurobiol. Dis. 32, 200 (2008).
http://dx.doi.org/10.1016/j.nbd.2008.08.005
10.
10. B. M. Baker, B. Trappmann, S. C. Stapleton, E. Toro, and C. S. Chen, Lab Chip 13, 3246 (2013).
http://dx.doi.org/10.1039/c3lc50493j
11.
11. M. B. Chen, S. Srigunapalan, A. R. Wheeler, and C. A. Simmons, Lab Chip 13, 2591 (2013).
http://dx.doi.org/10.1039/c3lc00051f
12.
12. N. W. Choi, M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, and A. D. Stroock, Nat. Mater. 6, 908 (2007).
http://dx.doi.org/10.1038/nmat2022
13.
13. K. M. Chrobak, D. R. Potter, and J. Tien, Microvasc. Res. 71, 185 (2006).
http://dx.doi.org/10.1016/j.mvr.2006.02.005
14.
14. L. Cucullo, M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro, Brain Res. 951, 243 (2002).
http://dx.doi.org/10.1016/S0006-8993(02)03167-0
15.
15. L. Griep, F. Wolbers, B. de Wagenaar, P. ter Braak, B. Weksler, I. A. Romero, P. Couraud, I. Vermes, A. van der Meer, and A. van den Berg, Biomed. Microdev. 15, 145 (2013).
http://dx.doi.org/10.1007/s10544-012-9699-7
16.
16. G. Li, M. J. Simon, L. M. Cancel, Z.-D. Shi, X. Ji, J. M. Tarbell, B. Morrison III, and B. M. Fu, Ann. Biomed. Eng. 38, 2499 (2010).
http://dx.doi.org/10.1007/s10439-010-0023-5
17.
17. B. Prabhakarpandian, M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant, Lab Chip 13, 1093 (2013).
http://dx.doi.org/10.1039/c2lc41208j
18.
18. Y. Zheng, J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, and J. A. López, Proc. Natl. Acad. Sci. U.S.A. 109, 9342 (2012).
http://dx.doi.org/10.1073/pnas.1201240109
19.
19. R. Booth and H. Kim, Lab Chip 12, 1784 (2012).
http://dx.doi.org/10.1039/c2lc40094d
20.
20. J. W. Song, S. P. Cavnar, A. C. Walker, K. E. Luker, M. Gupta, Y. C. Tung, G. D. Luker, and S. Takayama, Plos One 4, e5756 (2009).
http://dx.doi.org/10.1371/journal.pone.0005756
21.
21. M. Moya, D. Tran, and S. C. George, Stem Cell Res. Ther. 4, S15 (2013).
http://dx.doi.org/10.1186/scrt376
22.
22. M. L. Moya, Y. H. Hsu, A. P. Lee, C. C. W. Hughes, and S. C. George, Tissue Eng. Part C 19, 730 (2013).
http://dx.doi.org/10.1089/ten.tec.2012.0430
23.
23. V. L. Cross, Y. Zheng, N. Won Choi, S. S. Verbridge, B. A. Sutermaster, L. J. Bonassar, C. Fischbach, and A. D. Stroock, Biomaterials 31, 8596 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.07.072
24.
24. J. P. Morgan, P. F. Delnero, Y. Zheng, S. S. Verbridge, J. M. Chen, M. Craven, N. W. Choi, A. Diaz-Santana, P. Kermani, B. Hempstead, J. A. Lopez, T. N. Corso, C. Fischbach, and A. D. Stroock, Nat. Protoc. 8, 1820 (2013).
http://dx.doi.org/10.1038/nprot.2013.110
25.
25. N. Rajan, J. Habermehl, M.-F. Coté, C. J. Doillon, and D. Mantovani, Nat. Protoc. 1, 2753 (2007).
http://dx.doi.org/10.1038/nprot.2006.430
26.
26. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. MacVicar, and E. A. Newman, Nature 468, 232 (2010).
http://dx.doi.org/10.1038/nature09613
27.
27. S. S. Verbridge, N. W. Choi, Y. Zheng, D. J. Brooks, A. D. Stroock, and C. Fischbach, Tissue Eng. Part A 16, 2133 (2010).
http://dx.doi.org/10.1089/ten.tea.2009.0670
28.
28. N. W. Choi, S. S. Verbridge, R. M. Williams, J. Chen, J. Y. Kim, R. Schmehl, C. E. Farnum, W. R. Zipfel, C. Fischbach, and A. D. Stroock, Biomaterials 33, 2710 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.11.048
29.
29. L. Corstorphine and M. V. Sefton, J. Tissue Eng. Regener. Med. 5, 119 (2011).
http://dx.doi.org/10.1002/term.296
30.
30. T. Kihara, J. Ito, and J. Miyake, Plos One 8, e82382 (2013).
http://dx.doi.org/10.1371/journal.pone.0082382
31.
31. D. Bonneh-Barkay and C. A. Wiley, Brain Pathol. 19, 573 (2009).
http://dx.doi.org/10.1111/j.1750-3639.2008.00195.x
32.
32. B. Engelhardt, J. Cereb. Blood Flow Metab. 31, 1969 (2011).
http://dx.doi.org/10.1038/jcbfm.2011.98
33.
33. K. H. K. Wong, J. G. Truslow, and J. Tien, Biomaterials 31, 4706 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.02.041
34.
34. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, Neurobiol. Dis. 37, 13 (2010).
http://dx.doi.org/10.1016/j.nbd.2009.07.030
35.
35. A. Sharma and S. G. Schulman, Introduction to Fluorescence Spectroscopy ( John Wiley & Sons, 1999).
36.
36. S. Ramanujan, A. Pluen, T. D. McKee, E. B. Brown, Y. Boucher, and R. K. Jain, Biophys. J. 83, 1650 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)73933-7
37.
37. M. Ikeda, A. K. Bhattacharjee, T. Kondoh, T. Nagashima, and N. Tamaki, Biochem. Biophys. Res. Commun. 291, 669 (2002).
http://dx.doi.org/10.1006/bbrc.2002.6495
38.
38. R. C. Brown, R. D. Egleton, and T. P. Davis, Brain Res. 1014, 221 (2004).
http://dx.doi.org/10.1016/j.brainres.2004.04.034
39.
39. P. D. Yurchenco, Cold Spring Harbor Perspect. Biol. 3, a004911 (2011).
http://dx.doi.org/10.1101/cshperspect.a004911
40.
40. H. N. Kim, D. H. Kang, M. S. Kim, A. Jiao, D. H. Kim, and K. Y. Suh, Ann. Biomed. Eng. 40, 1339 (2012).
http://dx.doi.org/10.1007/s10439-012-0510-y
41.
41. P. Hersen and B. Ladoux, Nature 470, 340 (2011).
http://dx.doi.org/10.1038/470340a
42.
42. J. Park, H. N. Kim, D. H. Kim, A. Levchenko, and K. Y. Suh, IEEE Trans. Nanobiosci. 11, 28 (2012).
http://dx.doi.org/10.1109/TNB.2011.2165728
43.
43. C. Yang, M. W. Tibbitt, L. Basta, and K. S. Anseth, Nat. Mater. 13, 645 (2014).
http://dx.doi.org/10.1038/nmat3889
44.
44. Y. L. Yang, L. M. Leone, and L. J. Kaufman, Biophys. J. 97, 2051 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.07.035
45.
45. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).
http://dx.doi.org/10.1016/j.cell.2006.06.044
46.
46. J. W. Song and L. L. Munn, Proc. Natl. Acad. Sci. U.S.A. 108, 15342 (2011).
http://dx.doi.org/10.1073/pnas.1105316108
47.
47.See supplementary material at http://dx.doi.org/10.1063/1.4917508 for supplementary method, figures, and tables.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/2/10.1063/1.4917508
Loading
/content/aip/journal/bmf/9/2/10.1063/1.4917508
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/2/10.1063/1.4917508
2015-04-15
2016-12-08

Abstract

We present an engineered three-dimensional (3D) brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model , consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/2/1.4917508.html;jsessionid=mIN5Ku-WoXLVLfkQEuGIeYNK.x-aip-live-03?itemId=/content/aip/journal/bmf/9/2/10.1063/1.4917508&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/2/10.1063/1.4917508&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/2/10.1063/1.4917508'
Right1,Right2,Right3,