Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, Chem. Rev. 108, 109 (2008).
2. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, Nature 442, 412 (2006).
3. C. Situma, M. Hashimoto, and S. A. Soper, Biomol. Eng. 23, 213 (2006).
4. K. Pappaert, J. Vanderhoeven, P. Van Hummelen, B. Dutta, D. Clicq, G. V. Baron, and G. Desmet, J. Chromatogr., A 1014, 1 (2003).
5. A. Toegl, R. Kirchner, C. Gauer, and A. Wixforth, J. Biomol. Tech. 14(3), 197; see
6. R. Lenigk, R. H. Liu, M. Athavale, Z. J. Chen, D. Ganser, J. N. Yang, C. Rauch, Y. J. Liu, B. Chan, H. N. Yu, M. Ray, R. Marrero, and P. Grodzinski, Anal. Biochem. 311, 40 (2002).
7. M. J. Heller, A. H. Forster, and E. Tu, Electrophoresis 21, 157 (2000).<157::AID-ELPS157>3.0.CO;2-E
8. J. H. S. Kim, A. Marafie, X. Y. Jia, J. V. Zoval, and M. J. Madou, Sens. Actuators, B 113, 281 (2006).
9. J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, Anal. Bioanal. Chem. 378, 1678 (2004).
10. C. H. Duan, W. Wang, and Q. Xie, Biomicrofluidics 7, 026501 (2013).
11. O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 80, 2737 (1998).
12. L. J. Guo, X. Cheng, and C. F. Chou, Nano Lett. 4, 69 (2004).
13. W. Reisner, N. B. Larsen, H. Flyvbjerg, J. O. Tegenfeldt, and A. Kristensen, Proc. Natl. Acad. Sci. U.S.A. 106, 79 (2009).
14. J. W. Yeh, A. Taoni, Y. L. Chen, and C. F. Chou, Nano Lett. 12, 1597 (2012).
15. T. Matsuoka, B. C. Kim, C. Moraes, M. Han, and S. Takayama, Biomicrofluidics 7, 041301 (2013).
16. S. N. Wang and L. J. Lee, Biomicrofluidics 7, 011301 (2013).
17. K. K. Sriram, J. W. Yeh, Y. L. Lin, Y. R. Chang, and C. F. Chou, Nucleic Acids Res. 42, e85 (2014).
18. L. Lesser-Rojas, K. K. Sriram, K. T. Liao, S. C. Lai, P. C. Kuo, M. L. Chu, and C. F. Chou, Biomicrofluidics 8, 016501 (2014).
19. K. K. Sriram, C.-L. Chang, U. Rajesh Kumar, and C.-F. Chou, Biomicrofluidics 8, 052102 (2014).
20. J. Han, in Nanofluidics Nanoscience and Nanotechnology, edited by J. B. Edel and A. J. deMello (RCS Publishing, 2009), p. 31.
21. R. B. Schoch, L. F. Cheow, and J. Han, Nano Lett. 7, 3895 (2007).
22. R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, Nano Lett. 5, 1638 (2005).
23. S. Y. Yang, S. Son, S. Jang, H. Kim, G. Jeon, W. J. Kim, and J. K. Kim, Nano Lett. 11, 1032 (2011).
24. E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, and E. T. Lagally, Lab Chip 10, 581 (2010).
25. C. Peter, M. Meusel, F. Grawe, A. Katerkamp, K. Cammann, and T. Borchers, Fresenius J. Anal. Chem. 371, 120 (2001).
26. Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, and Y. Ebara, Anal. Chem. 70, 1288 (1998).
27. T. Leïchlé, Y.-L. Lin, P.-C. Chiang, S.-M. Hu, K.-T. Liao, and C.-F. Chou, Sens. Actuators, B 161, 805 (2012).
28. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997).
29. J. Gu, R. Gupta, C.-F. Chou, Q. Wei, and F. Zenhausern, Lab Chip 7, 1198 (2007).
30.Handbook of Optics, 2nd ed., Sponsored by the Optical Society of America, edited by M. Bass ( McGraw-Hill, New York, 1995).
31. T. M. Squires, R. J. Messinger, and S. R. Manalis, Nat. Biotechnol. 26, 417 (2008).
32. E. Stellwagen and N. C. Stellwagen, Electrophoresis 23, 2794 (2002).<2794::AID-ELPS2794>3.0.CO;2-Y
33. S. Sjolander and C. Urbaniczky, Anal. Chem. 63, 2338 (1991).
34. Y. Y. Wang, P. Cheng, and D. W. Chan, Proteomics 3, 243 (2003).
35. V. Balakotaiah and H. C. Chang, Philos. Trans. R. Soc. A 351, 39 (1995).
36. V. Balakotaiah and H. C. Chang, Siam J. Appl. Math. 63, 1231 (2003).
37. X. D. Su, Y. J. Wu, and W. Knoll, Biosens. Bioelectron. 21, 719 (2005).
38. C. W. Wei, J. Y. Cheng, C. T. Huang, M. H. Yen, and T. H. Young, Nucleic Acids Res. 33, e78 (2005).
39. Y. Zhang, D. A. Hammer, and D. J. Graves, Biophys. J. 89, 2950 (2005).
40. M. Noerholm, H. Bruus, M. H. Jakobsen, P. Telleman, and N. B. Ramsing, Lab Chip 4, 28 (2004).

Data & Media loading...


Article metrics loading...



We propose biofunctionalized nanofluidic slits () as an effective platform for real-time fluorescence-based biosensing in a reaction-limited regime with optimized target capture efficiency. This is achieved by the drastic reduction of the diffusion length, thereby a boosted collision frequency between the target analytes and the sensor, and the size reduction of the sensing element down to the channel height comparable to the depletion layer caused by the reaction. Hybridization experiments conducted in DNA-functionalized nanoslits demonstrate the analyte depletion and the wash-free detection ∼10 times faster compared to the best microfluidic sensing platforms. The signal to background fluorescence ratio is drastically increased at lower target concentrations, in favor of low-copy number analyte analysis. Experimental and simulation results further show that biofunctionalized nanoslits provide a simple means to study reaction kinetics at the single-pixel level using conventional fluorescence microscopy with reduced optical depth.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd