Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/3/10.1063/1.4921252
1.
1. A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, Chem. Rev. 108, 109 (2008).
http://dx.doi.org/10.1021/cr0684467
2.
2. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, Nature 442, 412 (2006).
http://dx.doi.org/10.1038/nature05064
3.
3. C. Situma, M. Hashimoto, and S. A. Soper, Biomol. Eng. 23, 213 (2006).
http://dx.doi.org/10.1016/j.bioeng.2006.03.002
4.
4. K. Pappaert, J. Vanderhoeven, P. Van Hummelen, B. Dutta, D. Clicq, G. V. Baron, and G. Desmet, J. Chromatogr., A 1014, 1 (2003).
http://dx.doi.org/10.1016/S0021-9673(03)00715-5
5.
5. A. Toegl, R. Kirchner, C. Gauer, and A. Wixforth, J. Biomol. Tech. 14(3), 197; see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2279950/.
6.
6. R. Lenigk, R. H. Liu, M. Athavale, Z. J. Chen, D. Ganser, J. N. Yang, C. Rauch, Y. J. Liu, B. Chan, H. N. Yu, M. Ray, R. Marrero, and P. Grodzinski, Anal. Biochem. 311, 40 (2002).
http://dx.doi.org/10.1016/S0003-2697(02)00391-3
7.
7. M. J. Heller, A. H. Forster, and E. Tu, Electrophoresis 21, 157 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<157::AID-ELPS157>3.0.CO;2-E
8.
8. J. H. S. Kim, A. Marafie, X. Y. Jia, J. V. Zoval, and M. J. Madou, Sens. Actuators, B 113, 281 (2006).
http://dx.doi.org/10.1016/j.snb.2005.03.034
9.
9. J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, Anal. Bioanal. Chem. 378, 1678 (2004).
http://dx.doi.org/10.1007/s00216-004-2526-0
10.
10. C. H. Duan, W. Wang, and Q. Xie, Biomicrofluidics 7, 026501 (2013).
http://dx.doi.org/10.1063/1.4794973
11.
11. O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 80, 2737 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2737
12.
12. L. J. Guo, X. Cheng, and C. F. Chou, Nano Lett. 4, 69 (2004).
http://dx.doi.org/10.1021/nl034877i
13.
13. W. Reisner, N. B. Larsen, H. Flyvbjerg, J. O. Tegenfeldt, and A. Kristensen, Proc. Natl. Acad. Sci. U.S.A. 106, 79 (2009).
http://dx.doi.org/10.1073/pnas.0811468106
14.
14. J. W. Yeh, A. Taoni, Y. L. Chen, and C. F. Chou, Nano Lett. 12, 1597 (2012).
http://dx.doi.org/10.1021/nl2045292
15.
15. T. Matsuoka, B. C. Kim, C. Moraes, M. Han, and S. Takayama, Biomicrofluidics 7, 041301 (2013).
http://dx.doi.org/10.1063/1.4816835
16.
16. S. N. Wang and L. J. Lee, Biomicrofluidics 7, 011301 (2013).
http://dx.doi.org/10.1063/1.4774071
17.
17. K. K. Sriram, J. W. Yeh, Y. L. Lin, Y. R. Chang, and C. F. Chou, Nucleic Acids Res. 42, e85 (2014).
http://dx.doi.org/10.1093/nar/gku254
18.
18. L. Lesser-Rojas, K. K. Sriram, K. T. Liao, S. C. Lai, P. C. Kuo, M. L. Chu, and C. F. Chou, Biomicrofluidics 8, 016501 (2014).
http://dx.doi.org/10.1063/1.4861435
19.
19. K. K. Sriram, C.-L. Chang, U. Rajesh Kumar, and C.-F. Chou, Biomicrofluidics 8, 052102 (2014).
http://dx.doi.org/10.1063/1.4892515
20.
20. J. Han, in Nanofluidics Nanoscience and Nanotechnology, edited by J. B. Edel and A. J. deMello (RCS Publishing, 2009), p. 31.
21.
21. R. B. Schoch, L. F. Cheow, and J. Han, Nano Lett. 7, 3895 (2007).
http://dx.doi.org/10.1021/nl0724788
22.
22. R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, Nano Lett. 5, 1638 (2005).
http://dx.doi.org/10.1021/nl050966e
23.
23. S. Y. Yang, S. Son, S. Jang, H. Kim, G. Jeon, W. J. Kim, and J. K. Kim, Nano Lett. 11, 1032 (2011).
http://dx.doi.org/10.1021/nl200357y
24.
24. E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, and E. T. Lagally, Lab Chip 10, 581 (2010).
http://dx.doi.org/10.1039/b920589f
25.
25. C. Peter, M. Meusel, F. Grawe, A. Katerkamp, K. Cammann, and T. Borchers, Fresenius J. Anal. Chem. 371, 120 (2001).
http://dx.doi.org/10.1007/s002160101006
26.
26. Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, and Y. Ebara, Anal. Chem. 70, 1288 (1998).
http://dx.doi.org/10.1021/ac970584w
27.
27. T. Leïchlé, Y.-L. Lin, P.-C. Chiang, S.-M. Hu, K.-T. Liao, and C.-F. Chou, Sens. Actuators, B 161, 805 (2012).
http://dx.doi.org/10.1016/j.snb.2011.11.036
28.
28. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997).
http://dx.doi.org/10.1021/ja9719586
29.
29. J. Gu, R. Gupta, C.-F. Chou, Q. Wei, and F. Zenhausern, Lab Chip 7, 1198 (2007).
http://dx.doi.org/10.1039/b704851c
30.
30.Handbook of Optics, 2nd ed., Sponsored by the Optical Society of America, edited by M. Bass ( McGraw-Hill, New York, 1995).
31.
31. T. M. Squires, R. J. Messinger, and S. R. Manalis, Nat. Biotechnol. 26, 417 (2008).
http://dx.doi.org/10.1038/nbt1388
32.
32. E. Stellwagen and N. C. Stellwagen, Electrophoresis 23, 2794 (2002).
http://dx.doi.org/10.1002/1522-2683(200208)23:16<2794::AID-ELPS2794>3.0.CO;2-Y
33.
33. S. Sjolander and C. Urbaniczky, Anal. Chem. 63, 2338 (1991).
http://dx.doi.org/10.1021/ac00020a025
34.
34. Y. Y. Wang, P. Cheng, and D. W. Chan, Proteomics 3, 243 (2003).
http://dx.doi.org/10.1002/pmic.200390036
35.
35. V. Balakotaiah and H. C. Chang, Philos. Trans. R. Soc. A 351, 39 (1995).
http://dx.doi.org/10.1098/rsta.1995.0025
36.
36. V. Balakotaiah and H. C. Chang, Siam J. Appl. Math. 63, 1231 (2003).
http://dx.doi.org/10.1137/S0036139901368863
37.
37. X. D. Su, Y. J. Wu, and W. Knoll, Biosens. Bioelectron. 21, 719 (2005).
http://dx.doi.org/10.1016/j.bios.2005.01.006
38.
38. C. W. Wei, J. Y. Cheng, C. T. Huang, M. H. Yen, and T. H. Young, Nucleic Acids Res. 33, e78 (2005).
http://dx.doi.org/10.1093/nar/gni078
39.
39. Y. Zhang, D. A. Hammer, and D. J. Graves, Biophys. J. 89, 2950 (2005).
http://dx.doi.org/10.1529/biophysj.104.058552
40.
40. M. Noerholm, H. Bruus, M. H. Jakobsen, P. Telleman, and N. B. Ramsing, Lab Chip 4, 28 (2004).
http://dx.doi.org/10.1039/b311991b
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/3/10.1063/1.4921252
Loading
/content/aip/journal/bmf/9/3/10.1063/1.4921252
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/3/10.1063/1.4921252
2015-05-13
2016-09-29

Abstract

We propose biofunctionalized nanofluidic slits () as an effective platform for real-time fluorescence-based biosensing in a reaction-limited regime with optimized target capture efficiency. This is achieved by the drastic reduction of the diffusion length, thereby a boosted collision frequency between the target analytes and the sensor, and the size reduction of the sensing element down to the channel height comparable to the depletion layer caused by the reaction. Hybridization experiments conducted in DNA-functionalized nanoslits demonstrate the analyte depletion and the wash-free detection ∼10 times faster compared to the best microfluidic sensing platforms. The signal to background fluorescence ratio is drastically increased at lower target concentrations, in favor of low-copy number analyte analysis. Experimental and simulation results further show that biofunctionalized nanoslits provide a simple means to study reaction kinetics at the single-pixel level using conventional fluorescence microscopy with reduced optical depth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/3/1.4921252.html;jsessionid=iLPVcDlH2AUS4dKQnzJ9uXdH.x-aip-live-03?itemId=/content/aip/journal/bmf/9/3/10.1063/1.4921252&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/3/10.1063/1.4921252&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/3/10.1063/1.4921252'
Right1,Right2,Right3,