Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon, “ Alignment and sensitive detection of DNA by a moving interface,” Science 265(5181), 20962098 (1994).
2. D. C. Schwartz, X. J. Li, L. I. Hernandez, S. P. Ramnarain, E. J. Huff, and Y. K. Wang, “ Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping,” Science 262(5130), 110114 (1993).
3. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, “ Stretching of a single tethered polymer in a uniform-flow,” Science 268(5207), 8387 (1995).
4. S. R. Quake, H. Babcock, and S. Chu, “ The dynamics of partially extended single molecules of DNA,” Nature 388(6638), 151154 (1997).
5. J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. Chan, R. H. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “ Near-field scanner for moving molecules,” Phys. Rev. Lett. 86(7), 13781381 (2001).
6. E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson, A. M. Maletta, G. R. Yantz, E. D. Carstea, M. Fuchs, G. G. Wong, S. R. Gullans, and R. Gilmanshin, “ DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags,” Genome Res. 14, 11371146 (2004).
7. K. K. Sriram, J.-W. Yeh, Y.-L. Lin, Y.-R. Chang, and C.-F. Chou, “ Direct optical mapping of transcription factor binding sites on field-stretched lambda-DNA in nanofluidic devices,” Nucleic Acids Res. 42(10), e85 (2014).
8. Z. Qi, S. Redding, J.-Y. Lee, B. Gibb, Y. Kwon, H. Niu, W.-A. Gaines, P. Sung, and E.-C. Greene, “ DNA sequence alignment by microhomology sampling during homologous recombination,” Cell 160(5), 856869 (2015).
9. K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “ A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 26732678 (2007).
10. K. L. Kounovsky-Shafer, J. P. Hernandez-Ortiz, K. Jo, T. Odijk, J. J. de Pablo, and D. C. Schwartz, “ Presentation of large DNA molecules for analysis as nanoconfined dumbbells,” Macromolecules 46(20), 83568368 (2013).
11. J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “ The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 1097910983 (2004).
12. E. T. Lam, A. Hastie, C. Lin, D. Ehrlich, S. K. Das, M. D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao, and P.-Y. Kwok, “ Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly,” Nat. Biotechnol. 30(8), 771776 (2012).
13. W. Reisner, K. Morton, R. Riehn, Y. Wang, Z. Yu, M. Rosen, J. Sturm, S. Chou, E. Frey, and R. Austin, “ Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
14. J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner, “ Real-time DNA sequencing from single polymerase molecules,” Science 323(5910), 133138 (2009).
15. J. Huddleston, S. Ranade, M. Malig, F. Antonacci, M. Chaisson, L. Hon, P. H. Sudmant, T. A. Graves, C. Alkan, M. Y. Dennis, R. K. Wilson, S. W. Turner, J. Korlach, and E. E. Eichler, “ Reconstructing complex regions of genomes using long-read sequencing technology,” Genome Res. 24(4), 688696 (2014).
16. R. Marie, J. N. Pedersen, D. L. V. Bauer, K. H. Rasmussen, M. Yusuf, E. Volpi, H. Flyvbjerg, A. Kristensen, and K. U. Mir, “ Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device,” Proc. Natl. Acad. Sci. 110(13), 48934898 (2013).
17. W. Reisner, N. B. Larsen, A. Silahtaroglu, A. Kristensen, N. Tommerup, J. O. Tegenfeldt, and H. Flyvbjerg, “ Single-molecule denaturation mapping of DNA in nanofluidic channels,” Proc. Natl. Acad. Sci. U.S.A. 107(30), 1329413299 (2010).
18.See supplementary material at for details on the image processing.[Supplementary Material]
19. C. Noble, A. N. Nilsson, C. Freitag, J. P. Beech, J. O. Tegenfeldt, and T. Ambjörnsson, “ A fast and scalable kymograph alignment algorithm for nanochannel-based optical DNA mappings,” PLoS One 10(4), e0121905 (2015).
20. D. Poland and H. A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers: Statistical Mechanical Theory of Order-Disorder Transitions in Biological Macromolecules, Molecular Biology ( Academic Press, 1970).
21. A. Krueger, E. Protozanova, and M. D. Frank-Kamenetskii, “ Sequence-dependent basepair opening in DNA double helix,” Biophys. J. 90(9), 30913099 (2006).
22. R. L. Welch, R. Sladek, K. Dewar, and W. Reisner, “ Denaturation mapping of Saccharomyces cerevisiae,” Lab Chip 12(18), 33143321 (2012).
23. M. Müller, Information Retrieval for Music and Motion ( Springer, 2007).
24. H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou, “ Gradient nanostructures for interfacing microfluidics and nanofluidics,” Appl. Phys. Lett. 81(16), 3058 (2002).
25. J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “ Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 45384545 (2006).
26. L. K. Nyberg, F. Persson, J. Berg, J. Bergström, E. Fransson, L. Olsson, M. Persson, A. Stålnacke, J. Wigenius, J. O. Tegenfeldt, and F. Westerlund, “ A single-step competitive binding assay for mapping of single DNA molecules,” Biochem. Biophys. Res. Commun. 417(1), 404408 (2012).
27. R. K. Neely, P. Dedecker, J. I. Hotta, G. Urbanaviciute, S. Klimasauskas, and J. Hofkens, “ DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution,” Chem. Sci. 1(4), 453460 (2010).
28. Y. Michaeli, T. Shahal, D. Torchinsky, A. Grunwald, R. Hoch, and Y. Ebenstein, “ Optical detection of epigenetic marks: Sensitive quantification and direct imaging of individual hydroxymethylcytosine bases,” Chem. Commun. 49(77), 85998601 (2013).

Data & Media loading...


Article metrics loading...



The contiguity and phase of sequence information are intrinsic to obtain complete understanding of the genome and its relationship to phenotype. We report the fabrication and application of a novel nanochannel design that folds megabase lengths of genomic DNA into a systematic back-and-forth meandering path. Such meandering nanochannels enabled us to visualize the complete 5.7 Mbp (1 mm) stained DNA length of a chromosome in a single frame of a CCD. We were able to hold the DNA while implementing partial denaturation to obtain a barcode pattern that we could match to a reference map using the Poland-Scheraga model for DNA melting. The facility to compose such long linear lengths of genomic DNA in one field of view enabled us to directly visualize a repeat motif, count the repeat unit number, and chart its location in the genome by reference to unique barcode motifs found at measurable distances from the repeat. Meandering nanochannel dimensions can easily be tailored to human chromosome scales, which would enable the whole genome to be visualized in seconds.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd