Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/5/10.1063/1.4916230
1.
1. H. D. Williams, N. L. Trevaskis, S. A. Charman, R. M. Shanker, W. N. Charman, C. W. Pouton, and C. J. Porter, Pharmacol. Rev. 65(1), 315 (2013).
http://dx.doi.org/10.1124/pr.112.005660
2.
2. G. Edwards and S. Krishna, Eur. J. Clin. Microbiol. Infect. Dis. 23(4), 233 (2004).
http://dx.doi.org/10.1007/s10096-004-1113-9
3.
3. L.-H. Hung, S.-Y. Teh, J. Jester, and A. P. Lee, Lab Chip 10(14), 1820 (2010).
http://dx.doi.org/10.1039/c002866e
4.
4. C. Wischke and S. P. Schwendeman, Int. J. Pharm. 364(2), 298 (2008).
http://dx.doi.org/10.1016/j.ijpharm.2008.04.042
5.
5. J. Hurler, O. A. Berg, M. Skar, A. H. Conradi, P. J. Johnsen, and N. Škalko-Basnet, J. Pharm. Sci. 101(10), 3906 (2012).
http://dx.doi.org/10.1002/jps.23260
6.
6. J. P. Jain, W. Y. Ayen, and N. Kumar, Curr. Pharm. Des. 17(1), 65 (2011).
http://dx.doi.org/10.2174/138161211795049822
7.
7. A. Fernández-Carballido, R. Herrero-Vanrell, I. Molina-Martınez, and P. Pastoriza, Int. J. Pharm. 279(1), 33 (2004).
http://dx.doi.org/10.1016/j.ijpharm.2004.04.003
8.
8. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton, and V. Préat, J. Controlled Release 161(2), 505 (2012).
http://dx.doi.org/10.1016/j.jconrel.2012.01.043
9.
9. D. Sahana, G. Mittal, V. Bhardwaj, and M. Kumar, J. Pharm. Sci. 97(4), 1530 (2008).
http://dx.doi.org/10.1002/jps.21158
10.
10. S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, Int. J. Pharm. 415(1), 34 (2011).
http://dx.doi.org/10.1016/j.ijpharm.2011.05.049
11.
11. C. Fonseca, S. Simões, and R. Gaspar, J. Controlled Release 83(2), 273 (2002).
http://dx.doi.org/10.1016/S0168-3659(02)00212-2
12.
12. A. Budhian, S. J. Siegel, and K. I. Winey, J. Microencapsulation 22(7), 773 (2005).
http://dx.doi.org/10.1080/02652040500273753
13.
13. G. Mittal, D. K. Sahana, V. Bhardwaj, and M. N. V. R. Kumar, J. Controlled Release 119(1), 77 (2007).
http://dx.doi.org/10.1016/j.jconrel.2007.01.016
14.
14. A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf., B 75(1), 1 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2009.09.001
15.
15. X. Huang and C. S. Brazel, J. Controlled Release 73(2–3), 121 (2001).
http://dx.doi.org/10.1016/S0168-3659(01)00248-6
16.
16. M. Shaillender, R. Luo, S. S. Venkatraman, and B. Neu, Int. J. Pharm. 415(1), 211 (2011).
http://dx.doi.org/10.1016/j.ijpharm.2011.06.011
17.
17. R. Luo, B. Neu, and S. S. Venkatraman, Small 8(16), 2585 (2012).
http://dx.doi.org/10.1002/smll.201200398
18.
18. L. Zhang, Y.-I. Jeong, S. Zheng, S. I. Jang, H. Suh, D. H. Kang, and I. Kim, Polym. Chem. 4(4), 1084 (2013).
http://dx.doi.org/10.1039/C2PY20755A
19.
19. C. M. Nolan, C. D. Reyes, J. D. Debord, A. J. García, and L. A. Lyon, Biomacromolecules 6(4), 2032 (2005).
http://dx.doi.org/10.1021/bm0500087
20.
20. T. Yang, H. Long, M. Malkoch, E. K. Gamstedt, L. Berglund, and A. Hult, J. Polym. Sci., Part A: Polym. Chem. 49(18), 4044 (2011).
http://dx.doi.org/10.1002/pola.24847
21.
21. H. Zhang, D. Liu, M. A. Shahbazi, E. Mäkilä, B. Herranz-Blanco, J. Salonen, J. Hirvonen, and H. A. Santos, Adv. Mater. 26(26), 4497 (2014).
http://dx.doi.org/10.1002/adma.201400953
22.
22. D. Liu, H. Zhang, B. Herranz-Blanco, E. Mäkilä, V. P. Lehto, J. Salonen, J. Hirvonen, and H. A. Santos, Small 10(10), 2029 (2014).
http://dx.doi.org/10.1002/smll.201303740
23.
23. M.-A. Shahbazi, B. Herranz, and H. A. Santos, Biomatter 2(4), 296 (2012).
http://dx.doi.org/10.4161/biom.22347
24.
24. M. Shakweh, M. Besnard, V. Nicolas, and E. Fattal, Eur. J. Pharm. Biopharm. 61(1–2), 1 (2005).
http://dx.doi.org/10.1016/j.ejpb.2005.04.006
25.
25. W. J. Duncanson, T. Lin, A. R. Abate, S. Seiffert, R. K. Shah, and D. A. Weitz, Lab Chip 12(12), 2135 (2012).
http://dx.doi.org/10.1039/c2lc21164e
26.
26. R. Luo, Z. H. Lim, W. Li, P. Shi, and C. H. Chen, Chem. Commun. 50, 7052 (2014).
http://dx.doi.org/10.1039/c4cc02216e
27.
27. R. Luo, Y. Cao, P. Shi, and C. H. Chen, Small 10(23), 4886 (2014).
http://dx.doi.org/10.1002/smll.201401312
28.
28. C.-L. Mou, X.-J. Ju, L. Zhang, R. Xie, W. Wang, N.-N. Deng, J. Wei, Q. Chen, and L.-Y. Chu, Langmuir 30(5), 1455 (2014).
http://dx.doi.org/10.1021/la4046379
29.
29. B. Herranz-Blanco, L. R. Arriaga, E. Mäkilä, A. Correia, N. Shrestha, S. Mirza, D. A. Weitz, J. Salonen, J. Hirvonen, and H. A. Santos, Lab Chip 14(6), 1083 (2014).
http://dx.doi.org/10.1039/c3lc51260f
30.
30. R. Luo, S. Ranjan, Y. Zhang, and C.-H. Chen, Chem. Commun. 49(72), 7887 (2013).
http://dx.doi.org/10.1039/c3cc44111c
31.
31. A. Abbaspourrad, N. J. Carroll, S.-H. Kim, and D. A. Weitz, J. Am. Chem. Soc. 135(20), 7744 (2013).
http://dx.doi.org/10.1021/ja401960f
32.
32. T. P. Lagus and J. F. Edd, J. Phys. D: Appl. Phys. 46(11), 114005 (2013).
http://dx.doi.org/10.1088/0022-3727/46/11/114005
33.
33. P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, Appl. Phys. Lett. 85(13), 2649 (2004).
http://dx.doi.org/10.1063/1.1796526
34.
34. R. Luo, S. S. Venkatraman, and B. R. Neu, Biomacromolecules 14(7), 2262 (2013).
http://dx.doi.org/10.1021/bm4003915
35.
35. C. P. Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga, Nanomed.: Nanotechnol., Biol. Med. 2(1), 8 (2006).
http://dx.doi.org/10.1016/j.nano.2005.12.003
36.
36.See supplementary material Fig. S1 at http://dx.doi.org/10.1063/1.4916230 for characterization of the correlation between particle sizes and drug release profiles.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/5/10.1063/1.4916230
Loading
/content/aip/journal/bmf/9/5/10.1063/1.4916230
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/5/10.1063/1.4916230
2015-03-24
2016-09-30

Abstract

The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels, was developed. PLGA nanoparticles were used as the hydrophobic drug carrier, while the PEG matrix functioned to slow down the drug release. Encapsulation of the hydrophobic agents was characterized by fluorescence detection of the hydrophobic dye Nile Red within the microgels. In addition, the microcomposites prepared via the droplet-based microfluidic technology showed size tunability and a monodisperse size distribution, along with improved release kinetics of the loaded cargo compared with bare PLGA nanoparticles. This composite system has potential as a universal delivery platform for a variety of hydrophobic molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/5/1.4916230.html;jsessionid=SBPpoyQy7L4sPcL57J0Dlxme.x-aip-live-02?itemId=/content/aip/journal/bmf/9/5/10.1063/1.4916230&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/5/10.1063/1.4916230&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/5/10.1063/1.4916230'
Right1,Right2,Right3,