Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/5/10.1063/1.4934713
1.
1. A. Al Ahmad, C. B. Taboada, M. Gassmann, and O. O. Ogunshola, J. Cereb. Blood Flow Metab. 31(2), 693 (2011).
http://dx.doi.org/10.1038/jcbfm.2010.148
2.
2. E. Vandenhaute, L. Dehouck, M. C. Boucau, E. Sevin, R. Uzbekov, M. Tardivel, F. Gosselet, L. Fenart, R. Cecchelli, and M. P. Dehouck, Curr. Neurovasc. Res. 8(4), 258 (2011).
http://dx.doi.org/10.2174/156720211798121016
3.
3. L. Cucullo, M. Hossain, V. Puvenna, N. Marchi, and D. Janigro, BMC Neurosci. 12(1), 40 (2011).
http://dx.doi.org/10.1186/1471-2202-12-40
4.
4. B. Germann, W. Neuhaus, R. Hofer-Warbinek, and C. R. Noe, Pharmazie 63(4), 303 (2008).
5.
5. Y. Molino, F. Jabes, E. Lacassagne, N. Gaudin, and M. Khrestchatisky, J. Visualized Exp. 2014, e51278.
6.
6. R. Shawahna, X. Decleves, and J. M. Scherrmann, Curr. Drug Metab. 14(1), 120 (2013).
http://dx.doi.org/10.2174/138920013804545232
7.
7. E. Vandenhaute, E. Sevin, D. Hallier-Vanuxeem, M. P. Dehouck, and R. Cecchelli, Drug Discovery Today 17(7–8), 285 (2012).
http://dx.doi.org/10.1016/j.drudis.2011.10.006
8.
8. N. Filipovic, K. Ghimire, I. Saveljic, Z. Milosevic, and C. Ruegg, “ Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital well shaker system,” Comput. Methods Biomech. Biomed. Eng. (published online 2015).
http://dx.doi.org/10.1080/10255842.2015.1051973
9.
9. P. Naik and L. Cucullo, J. Pharm. Sci. 101(4), 1337 (2012).
http://dx.doi.org/10.1002/jps.23022
10.
10. R. C. Brown, A. P. Morris, and R. G. O'Neil, Brain Res. 1130(1), 17 (2007).
http://dx.doi.org/10.1016/j.brainres.2006.10.083
11.
11. L. Cucullo, B. Aumayr, E. Rapp, and D. Janigro, Curr. Opin. Drug Discovery Dev. 8(1), 89 (2005).
12.
12. X. F. Cao, H. X. Lin, L. Muskhelishvili, J. Latendresse, P. Richter, and R. H. Heflich, Respir. Res. 16, 30 (2015).
http://dx.doi.org/10.1186/s12931-015-0191-9
13.
13. H. Vernon, K. Clark, and J. P. Bressler, Methods Mol. Biol. 758, 153 (2011).
http://dx.doi.org/10.1007/978-1-61779-170-3_10
14.
14. P. D. Bowman, A. L. Betz, D. Ar, J. S. Wolinsky, J. B. Penney, R. R. Shivers, and G. W. Goldstein, In Vitro 17(4), 353 (1981).
http://dx.doi.org/10.1007/BF02618147
15.
15. P. J. Gaillard, L. H. Voorwinden, J. L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, A. G. de Boer, and D. D. Breimer, Eur. J. Pharm. Sci. 12(3), 215 (2001).
http://dx.doi.org/10.1016/S0928-0987(00)00123-8
16.
16. Z. Z. Sun, M. Worden, Y. Wroczynskyj, V. Yathindranath, J. van Lierop, T. Hegmann, and D. W. Miller, Int. J. Nanomed. 9, 3013 (2014).
http://dx.doi.org/10.2147/IJN.S62260
17.
17. Y. Takeshita, B. Obermeier, A. Cotleur, Y. Sano, T. Kanda, and R. M. Ransohoff, J. Neurosci. Methods 232, 165 (2014).
http://dx.doi.org/10.1016/j.jneumeth.2014.05.013
18.
18. Z. Q. Zhang, A. J. McGoron, E. T. Crumpler, and C. Z. Li, Appl. Biochem. Biotechnol. 163(2), 278 (2011).
http://dx.doi.org/10.1007/s12010-010-9037-6
19.
19. L. Cucullo, M. Hossain, W. Tierney, and D. Janigro, BMC Neurosci. 14, 18 (2013).
http://dx.doi.org/10.1186/1471-2202-14-18
20.
20. S. Nakagawa, M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, and M. Niwa, Neurochem. Int. 54(3–4), 253 (2009).
http://dx.doi.org/10.1016/j.neuint.2008.12.002
21.
21. A. S. Easton and N. J. Abbott, Brain Res. 953(1–2), 157 (2002).
http://dx.doi.org/10.1016/S0006-8993(02)03281-X
22.
22. R. D. Hurst and I. B. Fritz, J. Cell Physiol. 167(1), 89 (1996).
http://dx.doi.org/10.1002/(SICI)1097-4652(199604)167:1<89::AID-JCP10>3.0.CO;2-K
23.
23. M. Kusch-Poddar, J. Drewe, I. Fux, and H. Gutmann, Brain Res. 1064(1–2), 21 (2005).
http://dx.doi.org/10.1016/j.brainres.2005.10.014
24.
24. C. Moraes, G. Mehta, S. C. Lesher-Perez, and S. Takayama, Annu. Biomed. Eng. 40(6), 1211 (2012).
http://dx.doi.org/10.1007/s10439-011-0455-6
25.
25. A. D. van der Meer and A. van den Berg, Integr. Biol. 4(5), 461 (2012).
http://dx.doi.org/10.1039/c2ib00176d
26.
26. J. P. Wikswo, Exp. Biol. Med. 239, 1061 (2014).
http://dx.doi.org/10.1177/1535370214542068
27.
27. J. P. Wikswo and A. P. Porter, Exp. Biol. Med. 240, 3 (2015).
http://dx.doi.org/10.1177/1535370214564534
28.
28. L. M. Griep, F. Wolbers, B. de Wagenaar, P. M. ter Braak, B. B. Weksler, I. A. Romero, P. O. Couraud, I. Vermes, A. D. van der Meer, and A. van den Berg, Biomed. Microdevices 15(1), 145 (2013).
http://dx.doi.org/10.1007/s10544-012-9699-7
29.
29. B. Prabhakarpandian, M. C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant, Lab Chip 13(6), 1093 (2013).
http://dx.doi.org/10.1039/c2lc41208j
30.
30. R. Booth and H. Kim, Annu. Biomed. Eng. 42(12), 2379 (2014).
http://dx.doi.org/10.1007/s10439-014-1086-5
31.
31. J. A. Kim, H. N. Kim, S. K. Im, S. Chung, J. Y. Kang, and N. Choi, Biomicrofluidics 9(2), 024115 (2015).
http://dx.doi.org/10.1063/1.4917508
32.
32. J. Wikswo, E. L. Curtis, Z. E. Eagleton, B. C. Evans, A. Kole, L. H. Hofmeister, and W. J. Matloff, Lab Chip 13(18), 3496 (2013).
http://dx.doi.org/10.1039/c3lc50243k
33.
33. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70(23), 4974 (1998).
http://dx.doi.org/10.1021/ac980656z
34.
34. K. Aran, L. A. Sasso, N. Kamdar, and J. D. Zahn, Lab Chip 10(5), 548 (2010).
http://dx.doi.org/10.1039/b924816a
35.
35. Y. Liu, D. Markov, J. Wikswo, and L. McCawley, Biomed. Microdevices 13(5), 837 (2011).
http://dx.doi.org/10.1007/s10544-011-9554-2
36.
36. S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, and L. Studer, Nat. Biotechnol. 27(3), 275 (2009).
http://dx.doi.org/10.1038/nbt.1529
37.
37. Y. C. Shi, P. Kirwan, and F. J. Livesey, Nat. Protoc. 7(10), 1836 (2012).
http://dx.doi.org/10.1038/nprot.2012.116
38.
38. Y. C. Shi, P. Kirwan, J. Smith, H. P. C. Robinson, and F. J. Livesey, Nat. Neurosci. 15(3), 477 (2012).
http://dx.doi.org/10.1038/nn.3041
39.
39. A. A. Aboud, A. M. Tidball, K. K. Kumar, M. D. Neely, B. Y. Han, K. C. Ess, C. C. Hong, K. M. Erikson, P. Hedera, and A. B. Bowman, Neurobiol. Dis. 73, 204 (2015).
http://dx.doi.org/10.1016/j.nbd.2014.10.002
40.
40. A. M. Tidball, M. R. Bryan, M. A. Uhouse, K. K. Kumar, A. A. Aboud, J. E. Feist, K. C. Ess, M. D. Neely, M. Aschner, and A. B. Bowman, Hum. Mol. Genet. 24(7), 1929 (2015).
http://dx.doi.org/10.1093/hmg/ddu609
41.
41. K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, S. Nishikawa, K. Muguruma, and Y. Sasai, Nat. Biotechnol. 25(6), 681 (2007).
http://dx.doi.org/10.1038/nbt1310
42.
42. C. Boissart, A. Poulet, P. Georges, H. Darville, E. Julita, R. Delorme, T. Bourgeron, M. Peschanski, and A. Benchoua, Transl. Psychiatry 3, e294 (2013).
http://dx.doi.org/10.1038/tp.2013.71
43.
43. N. J. Lamas, B. Johnson-Kerner, L. Roybon, Y. A. Kim, A. Garcia-Diaz, H. Wichterle, and C. E. Henderson, PLoS One 9(10), e110324 (2014).
http://dx.doi.org/10.1371/journal.pone.0110324
44.
44. F. Roloff, H. Scheiblich, C. Dewitz, S. Dempewolf, M. Stern, and G. Bicker, PLoS One 10(2), e0118536 (2015).
http://dx.doi.org/10.1371/journal.pone.0118536
45.
45. X. Tang, L. Zhou, A. M. Wagner, M. C. Marchetto, A. R. Muotri, F. H. Gage, and G. Chen, Stem Cell Res. 11(2), 743 (2013).
http://dx.doi.org/10.1016/j.scr.2013.05.002
46.
46. U. Bickel, NeuroRX 2(1), 15 (2005).
http://dx.doi.org/10.1602/neurorx.2.1.15
47.
47. A. Hoffmann, J. Bredno, M. Wendland, N. Derugin, P. Ohara, and M. Wintermark, Transl. Stroke Res. 2(1), 106 (2011).
http://dx.doi.org/10.1007/s12975-010-0049-x
48.
48. J. M. May, Z. C. Qu, and S. Mendiratta, Arch. Biochem. Biophys. 349(2), 281 (1998).
http://dx.doi.org/10.1006/abbi.1997.0473
49.
49. E. Sarro, M. Lecina, A. Fontova, C. Sola, F. Godia, J. J. Cairo, and R. Bragos, Biosens. Bioelectron. 31(1), 257 (2012).
http://dx.doi.org/10.1016/j.bios.2011.10.028
50.
50. M. Odijk, A. D. van der Meer, D. Levner, H. J. Kim, M. W. van der Helm, L. I. Segerink, J. P. Frimat, G. A. Hamilton, D. E. Ingber, and A. van den Berg, Lab Chip 15(3), 745 (2015).
http://dx.doi.org/10.1039/C4LC01219D
51.
51. K. Benson, S. Cramer, and H. J. Galla, Fluids Barriers CNS 10(1), 5 (2013).
http://dx.doi.org/10.1186/2045-8118-10-5
52.
52. K. A. Newell-Litwa, M. Badoual, H. Asmussen, H. Patel, L. Whitmore, and A. R. Horwitz, J. Cell Biol. 210(2), 225 (2015).
http://dx.doi.org/10.1083/jcb.201504046
53.
53. S. McCue, D. Dajnowiec, F. Xu, M. Zhang, M. R. Jackson, and B. L. Langille, Circ. Res. 98(7), 939 (2006).
http://dx.doi.org/10.1161/01.RES.0000216595.15868.55
54.
54. B. Wojciak-Stothard and A. J. Ridley, J. Cell Biol. 161(2), 429 (2003).
http://dx.doi.org/10.1083/jcb.200210135
55.
55. J. H. Zar, Biostatistical Analysis, 2nd ed. ( Prentice-Hall, Englewood Cliffs, NJ, 1984).
56.
56. K. Hatherell, P. O. Couraud, I. A. Romero, B. Weksler, and G. J. Pilkington, J. Neurosci. Methods 199(2), 223 (2011).
http://dx.doi.org/10.1016/j.jneumeth.2011.05.012
57.
57. J. P. Wikswo, F. E. Block III, D. E. Cliffel, C. R. Goodwin, C. C. Marasco, D. A. Markov, D. L. McLean, J. A. McLean, J. R. McKenzie, R. S. Reiserer, P. C. Samson, D. K. Schaffer, K. T. Seale, and S. D. Sherrod, IEEE Trans. Biomed. Eng. 60(3), 682 (2013).
http://dx.doi.org/10.1109/TBME.2013.2244891
58.
58. K. Yamagata, M. Tagami, Y. Nara, M. Mitani, A. Kubota, H. Fujino, F. Numano, T. Kato, and Y. Yamori, Clin. Exp. Pharmacol. Physiol. 24(9–10), 710 (1997).
http://dx.doi.org/10.1111/j.1440-1681.1997.tb02117.x
59.
59. W. Pan, K. P. Stone, H. Hsuchou, V. K. Manda, Y. Zhang, and A. J. Kastin, Curr. Pharm. Des. 17(33), 3729 (2011).
http://dx.doi.org/10.2174/138161211798220918
60.
60. F. Shimizu, Y. Sano, K. Saito, M. A. Abe, T. Maeda, H. Haruki, and T. Kanda, Neurochem. Res. 37(2), 401 (2012).
http://dx.doi.org/10.1007/s11064-011-0626-8
61.
61. E. Gonzalez-Burgos, M. E. Carretero, and M. P. Gomez-Serranillos, Planta Med. 79(16), 1545 (2013).
http://dx.doi.org/10.1055/s-0033-1350797
62.
62. D. B. Stanimirovic, M. Bani-Yaghoub, M. Perkins, and A. S. Haqqani, Expert Opin. Drug Discovery 10(2), 141 (2015).
http://dx.doi.org/10.1517/17460441.2015.974545
63.
63. T. G. Walsh, R. P. Murphy, P. Fitzpatrick, K. D. Rochfort, A. F. Guinan, A. Murphy, and P. M. Cummins, J. Cell Physiol. 226(11), 3053 (2011).
http://dx.doi.org/10.1002/jcp.22655
64.
64. J. M. May and Z. C. Qu, Free Radical Res. 44(11), 1359 (2010).
http://dx.doi.org/10.3109/10715762.2010.508496
65.
65. D. B. Agus, S. S. Gambhir, W. M. Pardridge, C. Spielholz, J. Baselga, J. C. Vera, and D. W. Golde, J. Clin. Invest. 100(11), 2842 (1997).
http://dx.doi.org/10.1172/JCI119832
66.
66. J. M. May, Z. C. Qu, and H. Qiao, Am. J. Physiol. Cell 297(1), C169C178 (2009).
http://dx.doi.org/10.1152/ajpcell.00674.2008
67.
67. M. W. Toepke and D. J. Beebe, Lab Chip 6(12), 1484 (2006).
http://dx.doi.org/10.1039/b612140c
68.
68. J. D. Wang, N. J. Douville, S. Takayama, and M. ElSayed, Annu. Biomed. Eng. 40(9), 1862 (2012).
http://dx.doi.org/10.1007/s10439-012-0562-z
69.
69.See supplementary material at http://dx.doi.org/10.1063/1.4934713 for additional information.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/5/10.1063/1.4934713
Loading
/content/aip/journal/bmf/9/5/10.1063/1.4934713
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/5/10.1063/1.4934713
2015-10-26
2016-09-30

Abstract

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully . Accurate models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/5/1.4934713.html;jsessionid=IiBLTVXzwvBOVUhbXdPXxTQS.x-aip-live-06?itemId=/content/aip/journal/bmf/9/5/10.1063/1.4934713&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/5/10.1063/1.4934713&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/5/10.1063/1.4934713'
Right1,Right2,Right3,