Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/6/10.1063/1.4936863
1.
1. T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi et al., Nature 391(6668), 667669 (1998).
http://dx.doi.org/10.1038/35570
2.
2. C. Genet and T. W. Ebbesen, Nature 445(7123), 3946 (2007).
http://dx.doi.org/10.1038/nature05350
3.
3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen et al., Rev. Mod. Phys. 82(1), 729 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.729
4.
4. L. Moreno and F. García-Vidal, Opt. Express 12(16), 36193628 (2004).
http://dx.doi.org/10.1364/OPEX.12.003619
5.
5. J. Ji, J. G. O'Connell, D. J. D. Carter et al., Anal. Chem. 80(7), 24912498 (2008).
http://dx.doi.org/10.1021/ac7023206
6.
6. C. Escobedo, Lab Chip 13(13), 24452463 (2013).
http://dx.doi.org/10.1039/c3lc50107h
7.
7. L. Tu, W. Wang, and Z. Qiu, Spectrosc. Spectral Anal. 35(3), 751759 (2015).
http://dx.doi.org/10.3964/j.issn.1000-0593(2015)03-0751-09
8.
8. J. Choi, K. Kim, Y. Oh et al., Adv. Opt. Mater. 2(1), 4855 (2014).
http://dx.doi.org/10.1002/adom.201300330
9.
9. J. Junesch, T. Sannomiya, and A. B. Dahlin, ACS Nano 6(11), 1040510415 (2012).
http://dx.doi.org/10.1021/nn304662e
10.
10. N. J. Wittenberg, H. Im, T. W. Johnson et al., ACS Nano 5(9), 75557564 (2011).
http://dx.doi.org/10.1021/nn202554t
11.
11. S. G. Rodrigo, O. Mahboub, A. Degiron et al., Opt. Express 18(23), 2369123697 (2010).
http://dx.doi.org/10.1364/OE.18.023691
12.
12. A. A. Yanik, M. Huang, O. Kamohara et al., Nano Lett. 10(12), 49624969 (2010).
http://dx.doi.org/10.1021/nl103025u
13.
13. M. Najiminaini, F. Vasefi, B. Kaminska et al., Opt. Express 18(21), 2225522270 (2010).
http://dx.doi.org/10.1364/OE.18.022255
14.
14. H. Im, A. Lesuffleur, N. C. Lindquist et al., Anal. Chem. 81(8), 28542859 (2009).
http://dx.doi.org/10.1021/ac802276x
15.
15. J. S. Kee, S. Y. Lim, A. P. Perera et al., Sens. Actuators, B 182, 576583 (2013).
http://dx.doi.org/10.1016/j.snb.2013.03.053
16.
16. G. J. Kowalski, A. Talakoub, J. Ji et al., Opt. Eng. 48(10), 104402 (2009).
http://dx.doi.org/10.1117/1.3250276
17.
17. E. Maeda, S. Mikuriya, K. Endo et al., Appl. Phys. Lett. 95(13), 133504 (2009).
http://dx.doi.org/10.1063/1.3224890
18.
18. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, Phys. Rev. B 77(7), 075401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075401
19.
19. T. I. Wong, S. Han, L. Wu et al., Lab Chip 13(12), 24052413 (2013).
http://dx.doi.org/10.1039/c3lc41396a
20.
20. C. Valsecchi and A. G. Brolo, Langmuir 29(19), 56385649 (2013).
http://dx.doi.org/10.1021/la400085r
21.
21. J. P. Monteiro, L. B. Carneiro, M. M. Rahman et al., Sens. Actuators, B 178, 366370 (2013).
http://dx.doi.org/10.1016/j.snb.2012.12.090
22.
22. F. Eftekhari, R. Gordon, J. Ferreira et al., Appl. Phys. Lett. 92(25), 253103 (2008).
http://dx.doi.org/10.1063/1.2949682
23.
23. A. De Leebeeck, L. K. S. Kumar, V. de Lange et al., Anal. Chem. 79(11), 40944100 (2007).
http://dx.doi.org/10.1021/ac070001a
24.
24. N. C. Lindquist, A. Lesuffleur, H. Im et al., Lab Chip 9(3), 382387 (2009).
http://dx.doi.org/10.1039/B816735D
25.
25. S. H. Lee, T. W. Johnson, N. C. Lindquist et al., Adv. Funct. Mater. 22(21), 44394446 (2012).
http://dx.doi.org/10.1002/adfm.201200955
26.
26. N. J. Wittenberg, H. Im, X. Xu et al., Anal. Chem. 84(14), 60316039 (2012).
http://dx.doi.org/10.1021/ac300819a
27.
27. N. C. Lindquist, A. Lesuffleur, and S. H. Oh, Phys. Rev. B 76(15), 155109 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155109
28.
28. A. Lesuffleur, H. Im, N. C. Lindquist et al., Appl. Phys. Lett. 90(24), 243110 (2007).
http://dx.doi.org/10.1063/1.2747668
29.
29. C. Escobedo, A. G. Brolo, R. Gordon et al., Nano Lett. 12(3), 15921596 (2012).
http://dx.doi.org/10.1021/nl204504s
30.
30. K. L. Lee, S. H. Wu, and P. K. Wei, Opt. Express 17(25), 2310423113 (2009).
http://dx.doi.org/10.1364/OE.17.023104
31.
31. K. L. Lee, J. B. Huang, J. W. Chang et al., Sci. Rep. 5, 8547 (2015).
http://dx.doi.org/10.1038/srep08547
32.
32. S. H. Wu, K. L. Lee, R. H. Weng et al., PLoS One 9(2), e89522 (2014).
http://dx.doi.org/10.1371/journal.pone.0089522
33.
33. H. Im, N. J. Wittenberg, A. Lesuffleur et al., Chem. Sci. 1(6), 688696 (2010).
http://dx.doi.org/10.1039/c0sc00365d
34.
34. S. Kumar, N. J. Wittenberg, and S. H. Oh, Anal. Chem. 85(2), 971977 (2012).
http://dx.doi.org/10.1021/ac302690w
35.
35. F. Eftekhari, C. Escobedo, J. Ferreira et al., Anal. Chem. 81(11), 43084311 (2009).
http://dx.doi.org/10.1021/ac900221y
36.
36. C. Escobedo, A. G. Brolo, R. Gordon et al., Anal. Chem. 82(24), 1001510020 (2010).
http://dx.doi.org/10.1021/ac101654f
37.
37. R. Gordon, D. Sinton, K. L. Kavanagh et al., Acc. Chem. Res. 41(8), 10491057 (2008).
http://dx.doi.org/10.1021/ar800074d
38.
38. C. Gupta, W. C. Liao, D. Gallego-Perez, C. E. Castro, and L. J. Lee, Biomicrofluidics 8(2), 024114 (2014).
http://dx.doi.org/10.1063/1.4871595
39.
39. S. Liu, Y. Yan, Y. Wang, S. Senapati, and H. C. Chang, Biomicrofluidics 7(6), 61102 (2013).
http://dx.doi.org/10.1063/1.4832095
40.
40. K. F. Lo and Y. J. Juang, Biomicrofluidics 6(2), 26504 (2012).
http://dx.doi.org/10.1063/1.4730371
41.
41. W. Ouyang and W. Wang, Biomicrofluidics 8(5), 052106 (2014).
http://dx.doi.org/10.1063/1.4894160
42.
42. Y. Xia, E. Kim, X. M. Zhao et al., Science 273(5273), 347349 (1996).
http://dx.doi.org/10.1126/science.273.5273.347
43.
43. H. I. Ene and D. Poliwevski, Thermal Flow in Porous Media ( Reidel, Dordrecht, 1987).
44.
44. L. Bocquet and E. Charlaix, Chem. Soc. Rev. 39(3), 10731095 (2010).
http://dx.doi.org/10.1039/B909366B
45.
45. S. Arya, S. Khan, A. Vaid et al., J. Nano-Electron. Phys. 5(4), 04047 (2013).
46.
46. J. J. Vlassak and W. D. Nix, J. Mater. Res. 7(12), 32423249 (1992).
http://dx.doi.org/10.1557/JMR.1992.3242
47.
47. C. Schuster, A. Christ, and W. Fichtner, Microwave Opt. Technol. Lett. 25(1), 1621 (2000).
http://dx.doi.org/10.1002/(SICI)1098-2760(20000405)25:1<16::AID-MOP6>3.0.CO;2-O
48.
48. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov et al., Nano Lett. 10(8), 31233128 (2010).
http://dx.doi.org/10.1021/nl101873g
49.
49. H. Im, J. N. Sutherland, J. A. Maynard et al., Anal. Chem. 84(4), 19411947 (2012).
http://dx.doi.org/10.1021/ac300070t
50.
50. G. A. C. Tellez, R. N. Tait, P. Berini et al., Lab Chip 13(13), 25412546 (2013).
http://dx.doi.org/10.1039/c3lc41411f
51.
51. S. H. Lee, N. C. Lindquist, N. J. Wittenberg, L. R. Jordana, and S.-H. Oh, Lab Chip 12, 38823890 (2012).
http://dx.doi.org/10.1039/c2lc40455a
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/6/10.1063/1.4936863
Loading
/content/aip/journal/bmf/9/6/10.1063/1.4936863
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/6/10.1063/1.4936863
2015-11-25
2016-12-10

Abstract

Flow-through goldfilm perforated with periodically arrayed sub-wavelength nano-holes can cause extraordinary optical transmission (EOT), which has recently emerged as a label-free surface plasmon resonance sensor in biochemical detection by measuring the transmission spectral shift. This paper describes a systematic study of the effect of microfluidic field on the spectrum of EOT associated with the porous goldfilm. To detect biochemical molecules, the sub-micron-thick film is free-standing in a microfluidic field and thus subject to hydrodynamic deformation. The film deformation alone may cause spectral shift as measurement error, which is coupled with the spectral shift as real signal associated with the molecules. However, this microfluid-induced measurement error has long been overlooked in the field and needs to be identified in order to improve the measurement accuracy. Therefore, we have conducted simulation and analytic analysis to investigate how the microfluidic flow rate affects the EOT spectrum and verified the effect through experiment with a sandwiched device combining Au/Cr/SiN nano-hole film and polydimethylsiloxane microchannels. We found significant spectralblue shift associated with even small flow rates, for example, 12.60 nm for 4.2 l/min. This measurement error corresponds to 90 times the optical resolution of the current state-of-the-art commercially available spectrometer or 8400 times the limit of detection. This really severe measurement error suggests that we should pay attention to the microfluidic parameter setting for EOT-based flow-through nano-hole sensors and adopt right scheme to improve the measurement accuracy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/6/1.4936863.html;jsessionid=asdvNLkY5dSQv_o9GQJDBBmr.x-aip-live-02?itemId=/content/aip/journal/bmf/9/6/10.1063/1.4936863&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/6/10.1063/1.4936863&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/6/10.1063/1.4936863'
Right1,Right2,Right3,