Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/9/6/10.1063/1.4938731
1.
1. H. Bayley, B. Cronin, A. Heron, M. A. Holden, W. L. Hwang, R. Syeda, J. Thompson, and M. I. Wallace, Mol. BioSyst. 4, 11911208 (2008).
http://dx.doi.org/10.1039/b808893d
2.
2. S. Leptihn, O. K. Castell, B. Cronin, E.-H. Lee, L. C. Gross, D. P. Marshall, J. R. Thompson, M. Holden, and M. I. Wallace, Nat. Protoc. 8, 10481057 (2013).
http://dx.doi.org/10.1038/nprot.2013.061
3.
3. T.-J. Jeon, J. L. Poulos, and J. J. Schmidt, Lab Chip 8, 17421744 (2008).
http://dx.doi.org/10.1039/b807932c
4.
4. S. A. Sarles and D. J. Leo, Lab Chip 10, 710717 (2010).
http://dx.doi.org/10.1039/b916736f
5.
5. W. L. Hwang, M. Chen, B. d. Cronin, M. A. Holden, and H. Bayley, J. Am. Chem. Soc. 130, 58785879 (2008).
http://dx.doi.org/10.1021/ja802089s
6.
6. M. A. Holden, D. Needham, and H. Bayley, J. Am. Chem. Soc. 129, 86508655 (2007).
http://dx.doi.org/10.1021/ja072292a
7.
7. W. L. Hwang, M. A. Holden, S. White, and H. Bayley, J. Am. Chem. Soc. 129, 1185411864 (2007).
http://dx.doi.org/10.1021/ja074071a
8.
8. G. Maglia, A. J. Heron, W. L. Hwang, M. A. Holden, E. Mikhailova, Q. Li, S. Cheley, and H. Bayley, Nat. Nanotechnol. 4, 437440 (2009).
http://dx.doi.org/10.1038/nnano.2009.121
9.
9. Y. Elani, A. Gee, R. V. Law, and O. Ces, Chem. Sci. 4, 33323338 (2013).
http://dx.doi.org/10.1039/c3sc51164b
10.
10. Y. Elani, R. V. Law, and O. Ces, Nat. Commun. 5, 5305 (2014).
http://dx.doi.org/10.1038/ncomms6305
11.
11. Y. Elani, R. V. Law, and O. Ces, Phys. Chem. Chem. Phys. 17, 1553415537 (2015).
http://dx.doi.org/10.1039/C4CP05933F
12.
12. G. Villar, A. D. Graham, and H. Bayley, Science 340, 4852 (2013).
http://dx.doi.org/10.1126/science.1229495
13.
13. H. M. Barriga, P. Booth, S. Haylock, R. Bazin, R. H. Templer, and O. Ces, J. R. Soc., Interface 11, 20140404 (2014).
http://dx.doi.org/10.1098/rsif.2014.0404
14.
14. O. K. Castell, J. Berridge, and M. I. Wallace, Angew. Chem., Int. Ed. 51, 31343138 (2012).
http://dx.doi.org/10.1002/anie.201107343
15.
15. L. C. Gross, O. K. Castell, and M. I. Wallace, Nano Lett. 11, 33243328 (2011).
http://dx.doi.org/10.1021/nl201689v
16.
16. J. B. Boreyko, P. Mruetusatorn, S. A. Sarles, S. T. Retterer, and C. P. Collier, J. Am. Chem. Soc. 135, 55455548 (2013).
http://dx.doi.org/10.1021/ja4019435
17.
17. P. Mruetusatorn, J. B. Boreyko, G. A. Venkatesan, S. A. Sarles, D. G. Hayes, and C. P. Collier, Soft Matter 10, 25302538 (2014).
http://dx.doi.org/10.1039/c3sm53032a
18.
18. P. Mruetusatorn, G. Polizos, P. G. Datskos, G. Taylor, S. A. Sarles, J. B. Boreyko, D. G. Hayes, and C. P. Collier, Langmuir 31, 42244231 (2015).
http://dx.doi.org/10.1021/la504712g
19.
19. J. L. Poulos, W. C. Nelson, T.-J. Jeon, and J. J. Schmidt, Appl. Phys. Lett. 95, 013706 (2009).
http://dx.doi.org/10.1063/1.3167283
20.
20. Y. Elani, A. deMello, X. Niu, and O. Ces, Lab Chip 12, 35143520 (2012).
http://dx.doi.org/10.1039/c2lc40287d
21.
21. C. E. Stanley, K. S. Elvira, X. Z. Niu, A. D. Gee, O. Ces, J. B. Edel, and A. J. deMello, Chem. Commun. 46, 16201622 (2010).
http://dx.doi.org/10.1039/b924897h
22.
22. P. H. King, G. Jones, H. Morgan, M. R. de Planque, and K.-P. Zauner, Lab Chip 14, 722729 (2014).
http://dx.doi.org/10.1039/C3LC51072G
23.
23. N. Malmstadt, M. A. Nash, R. F. Purnell, and J. J. Schmidt, Nano Lett. 6, 19611965 (2006).
http://dx.doi.org/10.1021/nl0611034
24.
24. M. A. Czekalska, T. S. Kaminski, S. Jakiela, K. T. Sapra, H. Bayley, and P. Garstecki, Lab Chip 15, 541548 (2015).
http://dx.doi.org/10.1039/C4LC00985A
25.
25. P. Abbyad, R. Dangla, A. Alexandrou, and C. N. Baroud, Lab Chip 11, 813821 (2011).
http://dx.doi.org/10.1039/C0LC00104J
26.
26. E. Fradet, C. Mcdougall, P. Abbyad, R. Dangla, D. Mcgloin, and C. N. Baroud, Lab Chip 11, 42284234 (2011).
http://dx.doi.org/10.1039/c1lc20541b
27.
27. R. Dangla, S. Lee, and C. N. Baroud, Phys. Rev. Lett. 107, 124501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.124501
28.
28. M. Zhou, Z. Diwu, N. Panchuk-Voloshina, and R. P. Haugland, Anal. Biochem. 253, 162168 (1997).
http://dx.doi.org/10.1006/abio.1997.2391
29.
29. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153184 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
30.
30. R. Syeda, M. A. Holden, W. L. Hwang, and H. Bayley, J. Am. Chem. Soc. 130, 1554315548 (2008).
http://dx.doi.org/10.1021/ja804968g
http://aip.metastore.ingenta.com/content/aip/journal/bmf/9/6/10.1063/1.4938731
Loading
/content/aip/journal/bmf/9/6/10.1063/1.4938731
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/9/6/10.1063/1.4938731
2015-12-30
2016-12-09

Abstract

Dropletinterface bilayer (DIB) networks are emerging as a cornerstone technology for the bottom up construction of cell-like and tissue-like structures and bio-devices. They are an exciting and versatile model-membrane platform, seeing increasing use in the disciplines of synthetic biology, chemical biology, and membrane biophysics. DIBs are formed when lipid-coated water-in-oil droplets are brought together—oil is excluded from the interface, resulting in a bilayer. Perhaps the greatest feature of the DIB platform is the ability to generate bilayer networks by connecting multiple droplets together, which can in turn be used in applications ranging from tissue mimics, multicellular models, and bio-devices. For such applications, the construction and release of DIB networks of defined size and composition on-demand is crucial. We have developed a droplet-based microfluidic method for the generation of different sized DIB networks (300–1500 pl droplets) on-chip. We do this by employing a droplet-on-rails strategy where droplets are guided down designated paths of a chip with the aid of microfabricated grooves or “rails,” and droplets of set sizes are selectively directed to specific rails using auxiliary flows. In this way we can uniquely produce parallel bilayer networks of defined sizes. By trapping several droplets in a rail, extended DIB networks containing up to 20 sequential bilayers could be constructed. The trapped DIB arrays can be composed of different lipid types and can be released on-demand and regenerated within seconds. We show that chemical signals can be propagated across the bio-network by transplanting enzymatic reaction cascades for inter-droplet communication.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/9/6/1.4938731.html;jsessionid=3saNggRtp6uXakWbejVLK50O.x-aip-live-03?itemId=/content/aip/journal/bmf/9/6/10.1063/1.4938731&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/9/6/10.1063/1.4938731&pageURL=http://scitation.aip.org/content/aip/journal/bmf/9/6/10.1063/1.4938731'
Right1,Right2,Right3,