1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/11/1/10.1063/1.1345702
1.
1.L. Glass and S. A. Kauffman, “The logical analysis of continuous, non-linear biochemical control networks,” J. Theor. Biol. 39, 103 (1973).
2.
2.M. A. Savageau, “Comparison of classical and autogenous systems of regulation in inducible operons,” Nature (London) 252, 546 (1974).
3.
3.S. Kauffman, “The large-scale structure and dynamics of gene control circuits: An ensemble approach,” J. Theor. Biol. 44, 167 (1974).
4.
4.L. Glass, “Classification of biological networks by their qualitative dynamics,” J. Theor. Biol. 54, 85 (1975).
5.
5.L. Glass, “Combinatorical and topological methods in nonlinear chemical kinetics,” J. Chem. Phys. 63, 1325 (1975).
6.
6.M. Savageau, Biochemical System Analysis (Addison-Wesley, Reading, MA, 1976).
7.
7.B. C. Goodwin, Analytical Physiology of Cells and Developing Organisms (Academic, London, 1976).
8.
8.J. J. Tyson and H. G. Othmer, “The dynamics of feedback control circuits in biochemical pathways,” Prog. Theor. Biol. 5, 1 (1978).
9.
9.G. K. Ackers, A. D. Johnson, and M. A. Shea, “Quantitative model for gene regulation by λ phase repressor,” Proc. Natl. Acad. Sci. U.S.A. 79, 1129 (1982).
10.
10.B. O. Palsson and E. N. Lightfoot, “Mathematical modeling of dynamics and control in metabolic networks,” J. Theor. Biol. 113, 279 (1985).
11.
11.F. Moran and A. Goldbeter, “Onset of birhymicity in a regulated biochemical system,” Biophys. Chem. 20, 149 (1984).
12.
12.J. Reinitz and J. R. Vaisnys, “Theoretical and experimental analysis of the phase lambda genetic switch implies missing levels of co-operativity,” J. Theor. Biol. 145, 295 (1990).
13.
13.B. Novak and J. J. Tyson, “Modeling the control of DNA replication in fission yeast,” Proc. Natl. Acad. Sci. U.S.A. 94, 9147 (1997).
14.
14.B. Novak and J. J. Tyson, “Quantitative analysis of a molecular model of mitotic control in fission yeast,” J. Theor. Biol. 173, 283 (1995).
15.
15.B. J. Hammond, “Quantitative study of the control of HIV-1 gene expression,” J. Theor. Biol. 163, 199 (1993).
16.
16.A. Keller, “Model genetic circuits encoding autoregulatory transcription factors,” J. Theor. Biol. 172, 169 (1995).
17.
17.H. H. McAdams and A. Arkin, “Simulation of prokaryotic genetic circuits,” Annu. Rev. Biophys. Biomol. Struct. 27, 199 (1998).
18.
18.A. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells,” Genetics 149, 1633 (1998).
19.
19.P. Smolen, D. A. Baxter, and J. H. Byrne, “Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems,” Am. J. Physiol. 43, C531 (1998).
20.
20.D. M. Wolf and F. H. Eeckman, “On the relationship between genomic regulatory element organization and gene regulatory dynamics,” J. Theor. Biol. 195, 167 (1998).
21.
21.M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional regulators,” Nature (London) 403, 335 (2000).
22.
22.T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature (London) 403, 339 (2000).
23.
23.A. Becksei and L. Serrano, “Engineering stability in gene networks by autoregulation,” Nature (London) 405, 590 (2000).
24.
24.D. Endy, L. You, J. Yin, and I. J. Molineux, “Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes,” Proc. Natl. Acad. Sci. U.S.A. 97, 5375 (2000).
25.
25.A. Sveiczer, A. Csikasz-Nagy, B. Gyorffy, J. J. Tyson, and B. Novak, “Modeling the fission yeast cell cycle: Quantized cycle times in mutant cells,” Proc. Natl. Acad. Sci. U.S.A. 97, 7865 (2000).
26.
26.H. H. McAdams and L. Shapiro, “Circuit simulation of genetic networks,” Science 269, 650 (1995).
27.
27.H. H. McAdams and A. Arkin, “Stochastic mechanisms in gene expression,” Proc. Natl. Acad. Sci. U.S.A. 94, 814 (1997).
28.
28.L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From molecular to modular cell biology,” Nature (London) 402, C47 (1999).
29.
29.D. A. Lauffenburger, “Cell signaling pathways as control modules: Complexity for simplicity?Proc. Natl. Acad. Sci. U.S.A. 97, 5031 (2000).
30.
30.R. Weiss and T. F. Knight, “Engineered communications for microbial robotics,” DNA6: 6th International Meeting on DNA Based Computers (Leiden, The Netherlands, 2000).
31.
31.J. Monod, J. Wyman, and J. P. Changeux, “On the nature of allosteric transitions: A plausible model,” J. Mol. Biol. 12, 88 (1965).
32.
32.A. Novick and M. Weiner, “Enzyme induction as an all-or-none phenomenon,” Proc. Natl. Acad. Sci. U.S.A. 43, 553 (1957).
33.
33.W. Chen, P. Kallio, and J. E. Bailey, “Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli,” Genetics 130, 15 (1993).
34.
34.D. Bray, “Protein molecules as computational elements in living cells,” Nature (London) 376, 307 (1995).
35.
35.N. Barkai and S. Leibler, “Biological rhythms: Circadian clocks limited by noise,” Nature (London) 403, 267 (2000).
36.
36.B. Lewin, Genes VI (Oxford University Press, Oxford, 1997).
37.
37.A more general treatment would incorporate all possible DNA-repressor binding configurations. However, the additional reactions have binding affinities characterized by equilibrium constants that are significantly smaller than for those considered, and their inclusion will not alter the general conclusions derived in this work.
38.
38.M. A. Shea and G. K. Akers, “The control system of bacteriophage lambda: A physical–chemical model for gene regulation,” J. Mol. Biol. 181, 211 (1985).
39.
39.P. Wong, S. Gladney, and J. D. Keasling, “Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose,” Biotechnol. Prog. 13, 132 (1997).
40.
40.W. R. McClure, “Mechanism and control of transcription initiation in prokaryotes,” Annu. Rev. Biochem. 54, 171 (1985).
41.
41.P. H. von Hippel, “An integrated model of the transcription complex in elongation, termination, and editing,” Science 281, 660 (1998).
42.
42.F. Jacob and J. Monod, “Genetic regulatory mechanisms in the synthesis of proteins,” J. Mol. Biol. 3, 318 (1961).
43.
43.R. Dickson, J. Ableson, W. Barnes, and W. Reznikoff, “Genetic regulation: The lac control region,” Science 187, 27 (1975).
44.
44.M. A. Savageau, “Comparison of classical and autogenous systems of regulation in inducible operons,” Nature (London) 252, 546 (1974).
45.
45.J. Monod and F. Jacob, “General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation,” Cold Spring Harbor Symp. Quant. Biol. 26, 389 (1961).
46.
46.M. Ptaschne et al., “How the λ repressor and cro work,” Cell 19, 1 (1980).
47.
47.B. J. Meyer, R. Maurer, and M. Ptashne, “Gene regulation at the right operator of bacteriophage λ,” J. Mol. Biol. 139, 163 (1980).
48.
48.A. D. Johnson et al., “λ repressor and cro—Components of an efficient molecular switch,” Nature (London) 294, 217 (1981).
49.
49.A. D. Johnson, C. O. Pabo, and R. T. Sauer, “Bacteriophage λ repressor and cro protein: Interactions with operator DNA,” Methods Enzymol. 65, 839 (1980).
50.
50.D. H. Ohlendorf and B. W. Matthews, “Structural studies of protein–nucleic acid interactions,” Annu. Rev. Biophys. Bioeng. 12, 259 (1983).
51.
51.J. Hasty, D. McMillen, F. Isaacs, and J. J. Collins (in preparation).
52.
52.See other Focus Articles in this issue of Chaos.
53.
53.J. Sancho, M. S. Miguel, and S. Katz, Phys. Rev. A 26, 1589 (1982).
54.
54.M. Samoilov, A. Arkin, and J. Ross, “On the deduction of chemical reaction pathways from measurements of time series of concentrations,” Chaos 11, 108 (2001).
55.
55.W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, 1984).
56.
56.J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, “Noise-based switches and amplifiers for gene expression,” Proc. Natl. Acad. Sci. U.S.A. 97, 2075 (2000).
57.
57.N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992).
58.
58.D. V. Rozanov, R. D’Ari, and S. P. Sineoky, “RecA-independent pathways of lambdoid prophage induction I Escherichia coli,” J. Bacteriol. 180, 6306 (1998).
59.
59.M. Marek and I. Schrieber, Chaotic Behavior of Deterministic Dissipative Systems (Cambridge University Press, Cambridge, 1991).
60.
60.G. H. Hardy and E. M. Wright, in An Introduction to the Theory of Numbers (Clarendon, Oxford, 1979).
61.
61.M. Ptashne, A Genetic Switch: Phage λ and Higher Organisms (Cell, Cambridge, MA, 1992).
62.
62.A. Villaverde, A. Benito, E. Viaplana, and R. Cubarsi, “Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature,” Appl. Env. Microbiol. 59, 3485 (1993).
63.
63.H. B. Lowman and M. Bina, “Temperature-mediated regulation and downstream inducible selection for controlling gene expression from the bacteriophage λ promoter,” Genetics 96, 133 (1990).
64.
64.P. Szafranski et al., “A new approach for containment of microorganisms: Dual control of streptavidin expression by antisense RNA and the T7 transcription system,” Proc. Natl. Acad. Sci. U.S.A. 94, 1059 (1997).
65.
65.T. C. Harding et al., “Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system,” Nature Biotech. 16, 553 (1998).
66.
66.D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem. 81, 2340 (1977).
67.
67.W. Bialek, “Stability and noise in biochemical switches,” cond-mat/0005235—Los Alamos Preprint Server, 2000.
68.
68.Y. Harada et al., “Single-molecule imaging of RNA polymerase–DNA interactions in real time,” Biophys. J. 76, 709 (1999).
69.
69.M. A. Savageau, “Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways,” BioSystems 47, 9 (1998).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/11/1/10.1063/1.1345702
Loading
/content/aip/journal/chaos/11/1/10.1063/1.1345702
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/11/1/10.1063/1.1345702
2001-03-01
2015-05-23
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Designer gene networks: Towards fundamental cellular control
http://aip.metastore.ingenta.com/content/aip/journal/chaos/11/1/10.1063/1.1345702
10.1063/1.1345702
SEARCH_EXPAND_ITEM