banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Moving backward noisily
Rent this article for
View: Figures


Image of FIG. 1.
FIG. 1.

Schematic illustration of several fundamentally different current–force characteristics addressed in this work (see also Fig. 3 ): (a) “Usual” response behavior, e.g., of an equilibrium system. (b) Absolute negative mobility (ANM). (c) Differential negative mobility (DNM). (d) Ratchet effect.

Image of FIG. 2.
FIG. 2.

Schematic current–load curve for a system exhibiting DNM in the vicinity of and symmetrically around .

Image of FIG. 3.
FIG. 3.

Schematic illustration of two further paradoxical current–load response curves: (a) Usual linear but unusual nonlinear response (extreme case of DNM). (b) Anomalous hysteresis as a collective effect.

Image of FIG. 4.
FIG. 4.

Sketch of the model: The “meandering” path with negligible width is represented by a one-dimensional curve in the -plane (the black curve). It is periodic in -direction with period and confined in -direction. The Brownian particle moves along this path under the action of an externally applied force .

Image of FIG. 5.
FIG. 5.

(a) Piecewise linear meandering path parametrized by the angle and the lengths , . (b) The corresponding one-dimensional effective potential with for or and for or . The encircled numbers mark corresponding positions in (a) and (b).

Image of FIG. 6.
FIG. 6.

Mechanism for the occurrence of ANM in the system (1) and (2) , or equivalently (3) , when driven away from thermal equilibrium by a time-dependent forcing . The dashed arrows represent jumps of the total external force (8) between its different states . The solid arrows illustrate the different routes the particle can follow, when starting in the potential minimum marked by the little “particle.” Due to the short sojourn time (“fast” driving) for the states thermally induced escapes out of the potential minima can be neglected.

Image of FIG. 7.
FIG. 7.

Current (7) versus load for the piecewise linear meandering path of Fig. 5 [with , , in (a), (b) and in (c)] under different nonequilibrium situations: (a) Time-dependent forcing as defined in (8) . Shown are the results of numerical simulations of (3) and (8) for dimensionless parameters , , , and . (b) Temperature anisotropy resulting in a state-dependent temperature (9) in (3) . The shown curve is obtained from the analytical result for the current detailed in Ref. 42 . The dimensionless parameters are , , and . (c) Time-dependent temperature as defined in (10) . The dots represent the results of numerical simulations of (3) and (10) for dimensionless parameters , , , , and .

Image of FIG. 8.
FIG. 8.

(a) Sketch of the basic collective model. A collection of particles move along a circle, which is divided into two parts. The particles can move between the two parts by crossing the gates, located at the North and South Pole. (b) Sketch of the four possible situations for the gate at the South Pole. The gate is characterized by the critical density . The particle density on a particular part of the circle is represented by the symbol . Depending on the value of , the gate is either open or closed for particles coming from that part.

Image of FIG. 9.
FIG. 9.

The mobility from (11) and (20) as a function of the particle number for different values of the critical density in units with . [Each discrete gives rise to exactly one point in each plot. The apparent “patterns” or “multiple curves” are only an artifact of the jumps of when going from one -value to the next.]


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Moving backward noisily