Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/16/1/10.1063/1.2150775
1.
1.F. Rieke, D. Warland, and W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, MA, 1999).
2.
2.P. Bressloff, S. Coombes, and B. de Souza, Phys. Rev. Lett. 79, 2791 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2791
3.
3.C. van Vreeswijk, L. F. Abbott, and G. B. Ermentrout, J. Comput. Neurosci. 1, 313 (1994).
http://dx.doi.org/10.1007/BF00961879
4.
4.U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. Lett. 74, 1570 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1570
5.
5.C. van Vreeswijk and H. Sompolinsky, Science 274, 1724 (1996).
http://dx.doi.org/10.1126/science.274.5293.1724
6.
6.C. van Vreeswijk and H. Sompolinsky, Neural Comput. 10, 1321 (1998).
http://dx.doi.org/10.1162/089976698300017214
7.
7.N. Brunel and V. Hakim, Neural Comput. 11, 1621 (1999).
http://dx.doi.org/10.1162/089976699300016179
8.
8.C. van Vreeswijk, Phys. Rev. Lett. 84, 5110 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5110
9.
9.D. Hansel and G. Mato, Phys. Rev. Lett. 86, 4175 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4175
10.
10.M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 89, 154105 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.154105
11.
11.N. B. A. Roxin and D. Hansel, Phys. Rev. Lett. 94, 238103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.238103
12.
12.R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math. 50, 1645 (1990).
http://dx.doi.org/10.1137/0150098
13.
13.U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. E 57, 2150 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.2150
14.
14.W. Senn and R. Urbanczik, SIAM J. Appl. Math. 61, 1143 (2001).
http://dx.doi.org/10.1137/S0036139998346038
15.
15.M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 89, 258701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.258701
16.
16.M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 93, 074101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.074101
17.
17.M. Timme, F. Wolf, and T. Geisel, Chaos 13, 377 (2003).
http://dx.doi.org/10.1063/1.1501274
18.
18.M. Timme and F. Wolf (unpublished).
19.
19.M. Denker, M. Timme, M. Diesmann, F. Wolf, and T. Geisel, Phys. Rev. Lett. 92, 074103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.074103
20.
20.G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed. (Chapman and Hall, Boca Raton, FL, 1996).
21.
21.M. Timme (unpublished).
22.
22.E. P. Wigner, Proc. Cambridge Philos. Soc. 47, 790 (1951).
23.
23.Statistical Theory of Spectra: Fluctuations, edited by C. E. Porter (Academic, New York, 1965).
24.
24.M. L. Mehta, Random Matrices (Academic, New York, 1991).
25.
25.T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 4–6, 189 (1998).
26.
26.O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rep. 52, 1 (1984).
http://dx.doi.org/10.1016/0370-1573(79)90087-5
27.
27.F. Haake, Quantum Signatures of Chaos (Springer, New York, 2001).
28.
28.D. A. Stariolo, E. M. F. Curado, and F. A. Tamarit, J. Phys. A 29, 4733 (1996).
29.
29.A. D. Mirlin and Y. V. Fyodorov, J. Phys. A 24, 2273 (1991).
http://dx.doi.org/10.1088/0305-4470/24/10/016
30.
30.Y. V. Fydorov and A. D. Mirlin, Phys. Rev. Lett. 67, 2049 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2049
31.
31.A. J. Bray and G. J. Rodgers, Phys. Rev. B 38, 11461 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.11461
32.
32.G. J. Rodgers and A. J. Bray, Phys. Rev. B 37, 3557 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.3557
33.
33.V. L. Girko, Theor. Probab. Appl. 29, 694 (1985).
http://dx.doi.org/10.1137/1129095
34.
34.H. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein, Phys. Rev. Lett. 60, 1895 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1895
35.
35.R. M. May, Nature (London) 261, 459 (1976).
http://dx.doi.org/10.1038/261459a0
36.
36.V. K. Jirsa and M. Ding, Phys. Rev. Lett. 93, 070602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.070602
37.
37.D. Z. Jin, Phys. Rev. Lett. 89, 208102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.208102
38.
38.C. Börgers and N. Kopell, Neural Comput. 15, 509 (2003).
http://dx.doi.org/10.1162/089976603321192059
39.
39.R. -M. Memmesheimer and M. Timme, e-print q-bio.NC/0601003 (2006).
40.
40.D. Hansel, G. Mato, and C. Meunier, Phys. Rev. E 48, 3470 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3470
41.
41.M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. D. I. Abarbanel, and G. Laurent, Phys. Rev. Lett. 87, 068102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.068102
42.
42.A. Zumdieck, M. Timme, T. Geisel, and F. Wolf, Phys. Rev. Lett. 93, 244103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.244103
43.
43.P. Ashwin and M. Timme, Nonlinearity 18, 2035 (2005).
http://dx.doi.org/10.1088/0951-7715/18/5/009
44.
44.P. Ashwin and M. Timme, Nature (London) 436, 36 (2005).
45.
45.R. Monasson, Eur. Phys. J. B 12, 555 (1999).
http://dx.doi.org/10.1007/s100510051038
46.
46.I. J. Farkas, I. Derényi, A. -L. Barabási, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://aip.metastore.ingenta.com/content/aip/journal/chaos/16/1/10.1063/1.2150775
Loading
/content/aip/journal/chaos/16/1/10.1063/1.2150775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/16/1/10.1063/1.2150775
2006-03-31
2016-12-08

Abstract

We analyze the dynamics of networks of spiking neural oscillators. First, we present an exact linear stability theory of the synchronous state for networks of arbitrary connectivity. For general neuron rise functions, stability is determined by multiple operators, for which standard analysis is not suitable. We describe a general nonstandard solution to the multioperator problem. Subsequently, we derive a class of neuronal rise functions for which all stability operators become degenerate and standard eigenvalue analysis becomes a suitable tool. Interestingly, this class is found to consist of networks of leaky integrate-and-fire neurons. For random networks of inhibitory integrate-and-fire neurons, we then develop an analytical approach, based on the theory of random matrices, to precisely determine the eigenvalue distributions of the stability operators. This yields the asymptotic relaxation time for perturbations to the synchronous state which provides the characteristic time scale on which neurons can coordinate their activity in such networks. For networks with finite in-degree, i.e., finite number of presynaptic inputs per neuron, we find a speed limit to coordinating spiking activity. Even with arbitrarily strong interaction strengths neurons cannot synchronize faster than at a certain maximal speed determined by the typical in-degree.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/16/1/1.2150775.html;jsessionid=zqxPQGTKnliqb88Dz6LBJANs.x-aip-live-06?itemId=/content/aip/journal/chaos/16/1/10.1063/1.2150775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/16/1/10.1063/1.2150775&pageURL=http://scitation.aip.org/content/aip/journal/chaos/16/1/10.1063/1.2150775'
Right1,Right2,Right3,