1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
On the complexity of periodic and nonperiodic behaviors of a hysteresis-based electronic oscillator
Rent:
Rent this article for
USD
10.1063/1.2778552
/content/aip/journal/chaos/17/4/10.1063/1.2778552
http://aip.metastore.ingenta.com/content/aip/journal/chaos/17/4/10.1063/1.2778552

Figures

Image of FIG. 1.
FIG. 1.

Electrical scheme of the hysteresis oscillator. (a) Linear part. (b) Hysteretic cell.

Image of FIG. 2.
FIG. 2.

(Color online) Qualitative sketch of the overall bifurcation scenario. The parameter space is partitioned into six main regions by the following bifurcation curves: pitchfork of equilibria (supercritical below ); Hopf (supercritical below and ); supercritical Hopf; and fold of cycles; period doubling; supercritical pitchfork of cycles; , , and heteroclinic; and homoclinic; symmetry breaking; death of chaotic attractors.

Image of FIG. 3.
FIG. 3.

Families of periodic and chaotic solutions in the state space ; the scale is the same for all plots ( , , and ). Limit cycles:(a) small (visiting half the state space) S-type solutions (shown in black and gray, respectively); (b) large (visiting the whole state space) S-type (only one solution is shown); (c) F-type ; (d) F-type . (e)–(h) Chaotic solutions belonging to the families of periodic solutions shown in (a)–(d), respectively.

Image of FIG. 4.
FIG. 4.

(Color) Brute-force simulations. (a) Bifurcation scenario [ vs ], with coloring proportional to . (b)–(e) One-dimensional bifurcation diagrams obtained along the black segments labeled correspondingly in (a). The Poincaré section chosen is .

Image of FIG. 5.
FIG. 5.

(Color online) Quantitative bifurcation diagram (obtained by numerical continuation) corresponding to most of the sketch in Fig. 2 .

Image of FIG. 6.
FIG. 6.

(Color online) Bifurcation curves for equilibria. (a) Qualitative bifurcation diagram with sketches of the bifurcating invariant sets for low values of (for high values of , refer to Fig. 7 ). Two bifurcation curves for cycles (the pitchfork of cycles and the period doubling ) are reported for the sake of completeness (dotted lines). Around the cusp points of , cycles originating from different bifurcations smoothly change into each other. (b) Corresponding quantitative curves obtained by numerical continuation and analytically .

Image of FIG. 7.
FIG. 7.

(Color online) System unfolding around the codimension-2 bifurcation point . (a) Qualitative bifurcation diagram with sketches of the bifurcating invariant sets. (b) Corresponding quantitative curves obtained by numerical continuation.

Image of FIG. 8.
FIG. 8.

(Color online) Bifurcation diagram in the neighborhoods of the orbit switch, Belyakov, and Shil’nikov-Hopf degeneracies of the heteroclinic curve. (a) Qualitative bifurcation diagram with sketches of the bifurcating invariant sets. (b) Corresponding quantitative curves obtained by numerical continuation. (c) Typical double heteroclinic loop along the heteroclinic bifurcation curve near (left panel) and enlargements around for parameter pairs above (central panel) and below (right panel) the orbit switch point . The unstable (stable) eigendirections are marked by outward (inward) arrows. The single (double) arrow denotes the leading (nonleading) eigendirection.

Image of FIG. 9.
FIG. 9.

(Color) (a) Detail of one of the right periodic regions of the bifurcation diagram of Fig. 4 . (b) Stable periodic solutions observable for parameter pairs corresponding to the points a to h in (a). The plot scales are the same for all figures (and the same as in Fig. 3 ). (c) Blue-sky scenario, with both period and length of the limit cycles increasing, along the upper and lower part of the white segment in (a). The labels mark the points corresponding to the stable periodic solutions reported in (b).

Image of FIG. 10.
FIG. 10.

(Color online) (a) Qualitative sketch of the structure organizing the periodic windows. All T curves (solid, dashed, and dot-dashed) mark fold bifurcations of cycles, whereas F curves mark period-doubling bifurcations. The letters k indicate the left and right periodic windows for cycles with oscillations. (b) Real bifurcation curves superimposed upon a detail of the brute-force bifurcation diagram.

Tables

Generic image for table
Table I.

The parameters , , and expressed as functions of the circuit parameters.

Loading

Article metrics loading...

/content/aip/journal/chaos/17/4/10.1063/1.2778552
2007-10-24
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the complexity of periodic and nonperiodic behaviors of a hysteresis-based electronic oscillator
http://aip.metastore.ingenta.com/content/aip/journal/chaos/17/4/10.1063/1.2778552
10.1063/1.2778552
SEARCH_EXPAND_ITEM