1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Is the normal heart rate “chaotic” due to respiration?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/19/2/10.1063/1.3133128
1.
1.C. Ludwig, Arch. f. Anat., Physiol. u. wissensch. Med., p. 242 (1847).
2.
2.R. E. Kleiger, J. P. Miller, J. T. Bigger, and A. J. Moss, Am. J. Cardiol. 59, 256 (1987).
http://dx.doi.org/10.1016/0002-9149(87)90795-8
3.
3.H. Tsuji, M. G. Larson, F. J. Venditti, E. S. Manders, J. C. Evans, C. L. Feldman, and D. Levy, Circulation 94, 2850 (1996).
4.
4.M. T. La Rovere, G. D. Pinna, R. Maestri, A. Mortara, S. Capomolla, O. Febo, R. Ferrari, M. Franchini, M. Gnemmi, C. Opasich, P. G. Riccardi, E. Traversi, and F. Corbelli, Circulation 107, 565 (2003).
http://dx.doi.org/10.1161/01.CIR.0000047275.25795.17
5.
5.M. C. Mackey and L. Glass, Science 197, 287 (1977).
http://dx.doi.org/10.1126/science.267326
6.
6.L. Glass and M. C. Mackey, Ann. N.Y. Acad. Sci. 316, 214 (1979).
http://dx.doi.org/10.1111/j.1749-6632.1979.tb29471.x
7.
7.A. L. Goldberger, News Physiol. Sci. 6, 87 (1991).
8.
8.D. L. Eckberg, J. Physiol. (Paris) 548, 339 (2003).
9.
9.A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, Circulation 101, E215 (2000).
10.
10.Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, Circulation 93, 1043 (1996).
11.
11.N. Wessel, H. Malberg, R. Bauernschmitt, and J. Kurths, Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 3325 (2007).
http://dx.doi.org/10.1142/S0218127407019093
12.
12.N. Wessel, A. Schirdewan, and J. Kurths, Phys. Rev. Lett. 91, 119801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.119801
13.
13.C. Raab, N. Wessel, A. Schirdewan, and J. Kurths, Phys. Rev. E 73, 041907 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041907
14.
14.N. Wessel, C. Ziehmann, J. Kurths, U. Meyerfeldt, A. Schirdewan, and A. Voss, Phys. Rev. E 61, 733 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.733
15.
15.H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2000).
16.
16.D. T. Kaplan and A. L. Goldberger, J. Cardiovasc. Electrophysiol. 2, 342 (1991).
http://dx.doi.org/10.1111/j.1540-8167.1991.tb01331.x
17.
17.M. Riedl, P. van Leeuwen, A. Suhrbier, H. Malberg, D. Grönemeyer, J. Kurths, and N. Wessel, Philos. Trans. R. Soc. London, Ser. A 367, 1407 (2009).
http://dx.doi.org/10.1098/rsta.2008.0277
18.
18.N. Wessel, J. Kurths, W. L. Ditto, and R. Bauernschmitt, Chaos 17, 015101 (2007).
http://dx.doi.org/10.1063/1.2718395
http://aip.metastore.ingenta.com/content/aip/journal/chaos/19/2/10.1063/1.3133128
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Separation of the three groups based (a) on linear parameter from time and frequency domain (the normalized ultra- and very low frequency bands vs the standard deviation of averaged 1 min intervals sdaNN1), (b) on linear and symbolic dynamics parameters (the percentage of beat-to-beat interval differences less than 20 ms pNNl20 vs the probability of low variability less than 20 ms POLVAR20), as well as (c) on nonlinear parameters (the large-scale dimension density vs the finite-time growth rate ).

Image of FIG. 2.

Click to view

FIG. 2.

Time series of beat-to-beat interval , diastolic blood pressure , and respiration on beat-to-beat basis of a healthy person in supine position with normal breathing.

Image of FIG. 3.

Click to view

FIG. 3.

Examples of estimated weight function of the nonlinear additive autoregressive model with external input of beat-to-beat as well as diastolic blood pressure dynamics [Eqs. (1) and (2)].

Image of FIG. 4.

Click to view

FIG. 4.

Simulation of the beat-to-beat intervals using a harmonic oscillation as (a) respiratory curve or (b) the original signal in the fitted model [Eqs. (1) and (2)]

Loading

Article metrics loading...

/content/aip/journal/chaos/19/2/10.1063/1.3133128
2009-06-30
2014-04-24

Abstract

The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medicaldiagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: “Is the normal heart rate chaotic?” We rather ask the following: “Is the normal heart rate ‘chaotic’ due to respiration?”

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/19/2/1.3133128.html;jsessionid=93ssx8kpxekz.x-aip-live-01?itemId=/content/aip/journal/chaos/19/2/10.1063/1.3133128&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Is the normal heart rate “chaotic” due to respiration?
http://aip.metastore.ingenta.com/content/aip/journal/chaos/19/2/10.1063/1.3133128
10.1063/1.3133128
SEARCH_EXPAND_ITEM