Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. R. Boyett, H. Honjo, and I. Kodama, Cardiovasc. Res. 47, 658 (2000).
2.H. Zhang, A. V. Holden, I. Kodama, H. Honjo, M. Lei, T. Vagues, and M. R. Boyett, Am. J. Physiol. Heart Circ. Physiol. 279, H397 (2000).
3.Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, Am. J. Physiol. Heart Circ. Physiol. 285, H2804 (2003).
4.H. Zhang, Y. Zhao, M. Lei, H. Dobrzynski, J. Liu, A. V. Holden, and M. R. Boyett, Am. J. Physiol. Heart Circ. Physiol. 292, H165 (2007).
5.L. Glass, Nature (London) 410, 277 (2001).
6.H. C. Routledge, S. Chowdhary, and J. N. Townend, J. Clin. Pharm. Ther. 27, 85 (2002).
7.L. Glass, Chaos 18, 020201 (2008).
8.C. Lerma, T. K. Madsen, M. Guevara, and L. Glass, J. Stat. Phys. 128, 347 (2007).
9.R. Wilders and H. J. Jongsma, Biophys. J. 65, 2601 (1993).
10.M. R. Guevara and T. A. Lewis, Chaos 5, 174 (1995).
11.L. J. DeFelice and A. Issac, J. Stat. Phys. 70, 339 (1993).
12.M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. D. Orto, E. Piccaluga, M. Turiel, G. Baselli, S. Cerutti, and A. Malliani, Circ. Res. 59, 178 (1986).
13.B. Pomeranz, R. J. Macaulay, M. A. Caudill, I. Kutz, D. Adam, D. Gordon, K. M. Kilborn, A. C. Barger, D. C. Shannon, and R. J. Cohen, Am. J. Physiol. Heart Circ. Physiol. 248, H151 (1985).
14.Task Force of the European Society of Cardiology the North American Society of Pacing Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use, Circulation 93, 1043 (1996).
15.B. Frey, G. Heger, C. Mayer, B. Kiegler, H. Stöhr, and G. Steurer, Pacing Clin. Electrophysiol. 19, 1882 (1996).
16.Y. Yamamoto and R. L. Hughson, Am. J. Physiol. Regulatory Integrative Comp. Physiol. 266, R40 (1994).
17.Y. Yamamoto, Y. Nakamura, H. Sato, M. Yamamoto, K. Kato, and R. L. Hughson, Am. J. Physiol. Regulatory Integrative Comp. Physiol. 269, R830 (1995).
18.K. Kotani, Z. R. Struzik, K. Takamasu, H. E. Stanley, and Y. Yamamoto, Phys. Rev. E 72, 041904 (2005).
19.T. Kuusela, T. Shepherd, and J. Hietarinta, Phys. Rev. E 67, 061904 (2003).
20.H. Zhang, A. V. Holden, D. Noble, and M. R. Boyett, J. Cardiovasc. Electrophysiol. 13, 465 (2002).
21.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
22.A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D, 16, 285 (1985).
23.C. S. Poon and C. K. Merrill, Nature (London) 389, 492 (1997).
24.C. S. Poon and M. Barahona, Proc. Natl. Acad. Sci. U.S.A. 98, 7107 (2001).
25.U. S. Freitas, C. Letellier, and L. A. Aguirre, Phys. Rev. E 79, 035201 (2009).
26.J. J. Zebrowski, K. Grudziński, T. Buchner, P. Kuklik, J. Gac, G. Gielerak, P. Sanders, and R. Baranowski, Chaos 17, 015121 (2007).
27.E. A. Raeder, R. D. Berger, R. Kenet, J. P. Kiely, T. H. Lehner, R. J. Cohen, and B. Lown, J. Appl. Cardiol. 2, 283 (1987).
28.M. Toichi, T. Sugiura, T. Murai, and A. Sengoku, J. Auton Nerv. Syst. 62, 79 (1997).

Data & Media loading...


Article metrics loading...



Fluctuations in the time interval between two consecutive R-waves of electrocardiogram during normal sinus rhythm may result from irregularities in the autonomic drive of the pacemaking sinoatrial node (SAN). We use a biophysically detailed mathematical model of the action potentials of rabbit SAN to quantify the effects of fluctuations in acetylcholine (ACh) on the pacemaker activity of the SAN and its variability. Fluctuations in ACh concentration model the effect of stochastic activity in the vagal parasympathetic fibers that innervate the SAN and produce varying rates of depolarization during the pacemaker potential, leading to fluctuations in cycle length (CL). Both the estimated maximal Lyapunov exponent and the noise limit of the resultant sequence of fluctuating CLs suggest chaotic dynamics. Apparently chaotic heart rate variability (HRV) seen in sinus rhythm can be produced by stochastic modulation of the SAN. The identification of HRV data as chaotic by use of time series measures such as a positive maximal Lyapunov exponent or positive noise limit requires both caution and a quantitative, predictive mechanistic model that is fully deterministic.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd