Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/19/2/10.1063/1.3152006
1.
1.P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, Nature (London) 399, 461 (1999).
http://dx.doi.org/10.1038/20924
2.
2.P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, H. E. Stanley, and Z. R. Struzik, Chaos 11, 641 (2001).
http://dx.doi.org/10.1063/1.1395631
3.
3.J. K. Kanters and N. H. Holstein-Rathlou, J. Cardiovasc. Electrophysiol. 5, 591 (1994).
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01300.x
4.
4.J. H. Lefebvre, D. A. Goodings, M. V. Kamath, and E. L. Fallen, Chaos 3, 267 (1993).
http://dx.doi.org/10.1063/1.165990
5.
5.A. Cecen and C. Erkal, Nonlinear Dyn. Psychol. Life Sci. 12, 359 (2008).
6.
6.A. Cecen and C. Erkal, Nonlinear Dyn. Psychol. Life Sci. 13, 181 (2009).
7.
7.A. Cecen and C. Erkal, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, 3679 (2008).
http://dx.doi.org/10.1142/S0218127408022640
8.
8.L. Glass, M. R. Guevara, A. Shrier, and R. Perez, Physica D 7, 89 (1983).
http://dx.doi.org/10.1016/0167-2789(83)90119-7
9.
9.B. West, A. Goldberger, G. Rooner, and V. Bhargava, Physica D 17, 198 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90004-1
10.
10.R. V. DeBoer, J. M. Karemaker, and J. Strackee, Am. J. Physiol. Heart Circ. Physiol. 253, H680 (1987).
11.
11.M. Ursino and E. Magosso, Am. J. Physiol. Heart Circ. Physiol. 284, H1479 (2003).
12.
12.M. Sakki, J. Kalda, M. Vainu, and M. Laan, Chaos 14, 138 (2004).
http://dx.doi.org/10.1063/1.1636151
13.
13.M. T. Rosenstein, J. J. Collins, and C. J. DeLuca, Physica D 65, 117 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90009-P
14.
14.E. Aurell, G. Bofetta, A. Crisanti, G. Paladin, and A. Vulpiani, Phys. Rev. Lett. 77, 1262 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1262
15.
15.M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, Phys. Rev. E 62, 427 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.427
16.
16.B. Podobnik, P. Ch. Ivanov, K. Biljakovic, D. Horvatic, H. E. Stanley, and I. Grosse, Phys. Rev. E 72, 026121 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.026121
17.
17.H. Kantz and T. Schreiber, Chaos 5, 143 (1995).
http://dx.doi.org/10.1063/1.166096
18.
18.M. E. D. Gomes, A. V. P. Souza, H. N. Guimaraes, and L. A. Aguirre, Chaos 10, 398 (2000).
http://dx.doi.org/10.1063/1.166507
19.
19.W. A. Brock, D. W. Dechert, J. A. Scheinkman, and B. LeBaron, Econometric Rev. 15, 197 (1996).
http://dx.doi.org/10.1080/07474939608800353
20.
20.A. I. McLeod and W. K. Li, J. Time Ser. Anal. 4, 269 (1983).
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00373.x
21.
21.M. Hinich, J. Nonparametr. Stat. 6, 205 (1996).
http://dx.doi.org/10.1080/10485259608832672
22.
22.R. S. Tsay, Biometrika 73, 461 (1986).
http://dx.doi.org/10.1093/biomet/73.2.461
23.
23.B. Pilgram and D. T. Kaplan, Am. J. Physiol. Reg. I 276, 1 (1999).
24.
24.R. T. Baillie and G. Kapetanios, J. Bus. Econ. Stat. 25, 447 (2007).
http://dx.doi.org/10.1198/073500106000000305
25.
25.R. T. Baillie and G. Kapetanios, J. Econometr. 147, 60 (2008).
http://dx.doi.org/10.1016/j.jeconom.2008.09.034
26.
26.K. Shimotsu and P. C. B. Phillips, J. Econometr. 130, 209 (2006).
http://dx.doi.org/10.1016/j.jeconom.2004.09.014
27.
27.K. Shimotsu, “Simple but effective tests of long memory versus structural breaks,” Queen’s University, Canada, 2006.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/19/2/10.1063/1.3152006
Loading
/content/aip/journal/chaos/19/2/10.1063/1.3152006
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/19/2/10.1063/1.3152006
2009-06-30
2016-12-08

Abstract

We present new evidence that normal heartbeat series are nonchaotic, nonlinear, and multifractal. In addition to considering the largest Lyapunov exponent and the correlation dimension, the results of the parametric and semiparametric estimation of the long memory parameter (long-range dependence) unambiguously reveal that the underlying process is nonstationary, multifractal, and has strong nonlinearity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/19/2/1.3152006.html;jsessionid=71qM_PIqNZhdeQgNLesoeyL9.x-aip-live-03?itemId=/content/aip/journal/chaos/19/2/10.1063/1.3152006&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/19/2/10.1063/1.3152006&pageURL=http://scitation.aip.org/content/aip/journal/chaos/19/2/10.1063/1.3152006'
Right1,Right2,Right3,