Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/19/2/10.1063/1.3152007
1.
1.J. S. Richman and J. R. Moorman, Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000).
2.
2.S. M. Pincus and R. R. Viscarello, Obstet. Gynecol. 79, 249 (1992).
3.
3.M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. E 71, 021906 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.021906
4.
4.D. T. Kaplan and A. L. Goldberger, J. Cardiovasc. Electrophysiol. 2, 342 (1991).
http://dx.doi.org/10.1111/j.1540-8167.1991.tb01331.x
5.
5.A. L. Goldberger and B. J. West, Ann. N.Y. Acad. Sci. 504, 195 (1987).
http://dx.doi.org/10.1111/j.1749-6632.1987.tb48733.x
6.
6.J. K. Kanters, N. H. Holstein-Rathlou, and E. Agner, J. Cardiovasc. Electrophysiol. 5, 591 (1994).
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01300.x
7.
7.M. Osaka, K. H. Chon, and R. J. Cohen, J. Cardiovasc. Electrophysiol. 6, 441 (1995).
http://dx.doi.org/10.1111/j.1540-8167.1995.tb00417.x
8.
8.M. Costa, I. R. Pimentel, T. Santiago, P. Sarreira, J. Melo, and E. Ducla-Soares, J. Cardiovasc. Electrophysiol. 10, 1350 (1999).
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00190.x
9.
9.L. Glass, J. Cardiovasc. Electrophysiol. 10, 1358 (1999).
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00191.x
10.
10.C. S. Poon and C. K. Merrill, Nature (London) 389, 492 (1997).
http://dx.doi.org/10.1038/39043
11.
11.M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. 29, 456 (1982).
http://dx.doi.org/10.1109/TBME.1982.324972
12.
12.J. T. Bigger, R. C. Steinman, L. M. Rolnitzky, J. L. Fleiss, P. Albrecht, and R. J. Cohen, Circulation 93, 2142 (1996).
13.
13.C. K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1343
14.
14.Y. Ashkenazy, P. C. Ivanov, S. Havlin, C. K. Peng, A. L. Goldberger, and H. E. Stanley, Phys. Rev. Lett. 86, 1900 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1900
15.
15.P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, Nature (London) 399, 461 (1999).
http://dx.doi.org/10.1038/20924
16.
16.J. B. Gao, Y. H. Cao, W. W. Tung, and J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond (Wiley, New York, 2007).
17.
17.J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, Phys. Rev. E 74, 066204 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.066204
18.
18.N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.712
19.
19.F. Takens, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898, edited by D. A. Rand and L. S. Young (Springer-Verlag, Berlin, 1981), p. 366.
20.
20.T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579 (1991).
http://dx.doi.org/10.1007/BF01053745
21.
21.M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, Phys. Rev. E 62, 427 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.427
22.
22.A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D 16, 285 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90011-9
23.
23.P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.346
24.
24.J. B. Gao, S. K. Hwang, and J. M. Liu, Phys. Rev. Lett. 82, 1132 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1132
25.
25.J. B. Gao, C. C. Chen, S. K. Hwang, and J. M. Liu, Int. J. Mod. Phys. B 13, 3283 (1999).
http://dx.doi.org/10.1142/S0217979299003027
26.
26.K. Hwang, J. B. Gao, and J. M. Liu, Phys. Rev. E 61, 5162 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5162
27.
27.J. B. Gao, J. Hu, W. W. Tung, Y. H. Cao, N. Sarshar, and V. P. Roychowdhury, Phys. Rev. E 73, 016117 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.016117
28.
28.M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett. 95, 198102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.198102
29.
29.C. Diks, J. C. Vanhouwelingen, F. Takens, and J. Degoede, Phys. Lett. A 201, 221 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00239-Y
30.
30.L. Stone, G. Landan, and R. M. May, Proc. R. Soc. London, Ser. B 263, 1509 (1996).
http://dx.doi.org/10.1098/rspb.1996.0220
31.
31.M. Strumik, W. M. Macek, and S. Redaelli, Phys. Rev. E 72, 036219 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.036219
32.
32.J. Hu, J. B. Gao, and K. D. White, Chaos, Solitons Fractals 22, 807 (2004).
http://dx.doi.org/10.1016/j.chaos.2004.02.061
33.
33.J. B. Gao, Physica D 106, 49 (1997).
http://dx.doi.org/10.1016/S0167-2789(97)00024-9
34.
34.C. J. Cellucci, A. M. Albano, P. E. Rapp, R. A. Pittenger, and R. C. Josiassen, Chaos 7, 414 (1997).
http://dx.doi.org/10.1063/1.166214
35.
35.G. Q. Wu, N. M. Arzeno, L. L. Shen, D. K. Tang, D. A. Zheng, N. Q. Zhao, D. L. Eckberg, and C. S. Poon, PLoS ONE 4, e4323 (2009).
http://dx.doi.org/10.1371/journal.pone.0004323
http://aip.metastore.ingenta.com/content/aip/journal/chaos/19/2/10.1063/1.3152007
Loading
/content/aip/journal/chaos/19/2/10.1063/1.3152007
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/19/2/10.1063/1.3152007
2009-06-30
2016-12-11

Abstract

Previous studies on heart rate variability (HRV) using chaos theory, fractal scaling analysis, and many other methods, while fruitful in many aspects, have produced much confusion in the literature. Especially the issue of whether normal HRV is chaotic or stochastic remains highly controversial. Here, we employ a new multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize HRV. SDLE has been shown to readily characterize major models of complex time series including deterministic chaos, noisy chaos, stochastic oscillations, random processes, random Levy processes, and complex time series with multiple scaling behaviors. Here we use SDLE to characterize the relative importance of nonlinear, chaotic, and stochastic dynamics in HRV of healthy, congestive heart failure, and atrial fibrillation subjects. We show that while HRV data of all these three types are mostly stochastic, the stochasticity is different among the three groups.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/19/2/1.3152007.html;jsessionid=3k0NhK5tyYsk6z_rgpqvPM1j.x-aip-live-06?itemId=/content/aip/journal/chaos/19/2/10.1063/1.3152007&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/19/2/10.1063/1.3152007&pageURL=http://scitation.aip.org/content/aip/journal/chaos/19/2/10.1063/1.3152007'
Right1,Right2,Right3,