Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. S. Richman and J. R. Moorman, Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000).
2.S. M. Pincus and R. R. Viscarello, Obstet. Gynecol. 79, 249 (1992).
3.M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. E 71, 021906 (2005).
4.D. T. Kaplan and A. L. Goldberger, J. Cardiovasc. Electrophysiol. 2, 342 (1991).
5.A. L. Goldberger and B. J. West, Ann. N.Y. Acad. Sci. 504, 195 (1987).
6.J. K. Kanters, N. H. Holstein-Rathlou, and E. Agner, J. Cardiovasc. Electrophysiol. 5, 591 (1994).
7.M. Osaka, K. H. Chon, and R. J. Cohen, J. Cardiovasc. Electrophysiol. 6, 441 (1995).
8.M. Costa, I. R. Pimentel, T. Santiago, P. Sarreira, J. Melo, and E. Ducla-Soares, J. Cardiovasc. Electrophysiol. 10, 1350 (1999).
9.L. Glass, J. Cardiovasc. Electrophysiol. 10, 1358 (1999).
10.C. S. Poon and C. K. Merrill, Nature (London) 389, 492 (1997).
11.M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. 29, 456 (1982).
12.J. T. Bigger, R. C. Steinman, L. M. Rolnitzky, J. L. Fleiss, P. Albrecht, and R. J. Cohen, Circulation 93, 2142 (1996).
13.C. K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).
14.Y. Ashkenazy, P. C. Ivanov, S. Havlin, C. K. Peng, A. L. Goldberger, and H. E. Stanley, Phys. Rev. Lett. 86, 1900 (2001).
15.P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, Nature (London) 399, 461 (1999).
16.J. B. Gao, Y. H. Cao, W. W. Tung, and J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond (Wiley, New York, 2007).
17.J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, Phys. Rev. E 74, 066204 (2006).
18.N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712 (1980).
19.F. Takens, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898, edited by D. A. Rand and L. S. Young (Springer-Verlag, Berlin, 1981), p. 366.
20.T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579 (1991).
21.M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, Phys. Rev. E 62, 427 (2000).
22.A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D 16, 285 (1985).
23.P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).
24.J. B. Gao, S. K. Hwang, and J. M. Liu, Phys. Rev. Lett. 82, 1132 (1999).
25.J. B. Gao, C. C. Chen, S. K. Hwang, and J. M. Liu, Int. J. Mod. Phys. B 13, 3283 (1999).
26.K. Hwang, J. B. Gao, and J. M. Liu, Phys. Rev. E 61, 5162 (2000).
27.J. B. Gao, J. Hu, W. W. Tung, Y. H. Cao, N. Sarshar, and V. P. Roychowdhury, Phys. Rev. E 73, 016117 (2006).
28.M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett. 95, 198102 (2005).
29.C. Diks, J. C. Vanhouwelingen, F. Takens, and J. Degoede, Phys. Lett. A 201, 221 (1995).
30.L. Stone, G. Landan, and R. M. May, Proc. R. Soc. London, Ser. B 263, 1509 (1996).
31.M. Strumik, W. M. Macek, and S. Redaelli, Phys. Rev. E 72, 036219 (2005).
32.J. Hu, J. B. Gao, and K. D. White, Chaos, Solitons Fractals 22, 807 (2004).
33.J. B. Gao, Physica D 106, 49 (1997).
34.C. J. Cellucci, A. M. Albano, P. E. Rapp, R. A. Pittenger, and R. C. Josiassen, Chaos 7, 414 (1997).
35.G. Q. Wu, N. M. Arzeno, L. L. Shen, D. K. Tang, D. A. Zheng, N. Q. Zhao, D. L. Eckberg, and C. S. Poon, PLoS ONE 4, e4323 (2009).

Data & Media loading...


Article metrics loading...



Previous studies on heart rate variability (HRV) using chaos theory, fractal scaling analysis, and many other methods, while fruitful in many aspects, have produced much confusion in the literature. Especially the issue of whether normal HRV is chaotic or stochastic remains highly controversial. Here, we employ a new multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize HRV. SDLE has been shown to readily characterize major models of complex time series including deterministic chaos, noisy chaos, stochastic oscillations, random processes, random Levy processes, and complex time series with multiple scaling behaviors. Here we use SDLE to characterize the relative importance of nonlinear, chaotic, and stochastic dynamics in HRV of healthy, congestive heart failure, and atrial fibrillation subjects. We show that while HRV data of all these three types are mostly stochastic, the stochasticity is different among the three groups.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd