Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/19/2/10.1063/1.3156832
1.
1.Abarbanel, H. D. I. , Brown, R. , and Kadtke, J. B. , “Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra,” Phys. Rev. A 41, 17821807 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.1782
2.
2.Akselrod, S. , Gordon, D. , Ubel, F. A. , Shannon, D. C. , Berger, A. C. , and Cohen, R. J. , “Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control,” Science 213, 220222 (1981).
http://dx.doi.org/10.1126/science.6166045
3.
3.Alvarez-Ramirez, J. , Rodriguez, E. , and Echeverría, J. C. , “Delays in the human heartbeat dynamics,” Chaos 19, 028502 (2009).
4.
4.Baillie, R. T. , Cecen, A. A. , and Erkal, C. , “Normal heartbeat series are nonchaotic, nonlinear, and multifractal: New evidence from semiparametric and parametric tests,” Chaos 19, 028503 (2009).
5.
5.Barahona, M. and Poon, C. S. , “Detection of nonlinear dynamics in short, noisy data,” Nature (London) 381, 215217 (1996).
http://dx.doi.org/10.1038/381215a0
6.
6.Bass, T. A. , The Predictors: How a Band of Maverick Physicists Used Chaos Theory to Trade Their Way to a Fortune on Wall Street (Holt, New York, 1999).
7.
7.Bigger, J. T. , Steinman, R. C. , Rolnitzky, L. M. , Fleiss, J. L. , Albrecht, P. , and Cohen, R. J. , “Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants,” Circulation 93, 21422151 (1996).
8.
8.Buchner, T. , Petelczyc, M. , Zebrowski, J. J. , Prejbisz, A. , Kabat, M. , Januszewicz, A. , Pietrowska, A. J. , and Szelenberger, W. , “On the nature of heart rate variability in a breathing normal subject: A stochastic process analysis,” Chaos 19, 028504 (2009).
9.
9.Costa, M. D. , Peng, C.-K. , and Goldberger, A. L. , “Multiscale analysis of heart rate dynamics: Entropy and time irreversibility measures,” Cardiovasc. Eng. 8, 8893 (2009).
http://dx.doi.org/10.1007/s10558-007-9049-1
10.
10.Costa, M. , Pimentel, I. R. , Santiago, T. , Sarreira, P. , Melo, J. , and Ducla-Soares, E. , “No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects,” J. Cardiovasc. Electrophysiol. 10, 13501357 (1999).
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00190.x
11.
11.Cvitanović, P. (ed.), Universality in Chaos (Adam Hilger, Bristol, 1984).
12.
12.Farmer, J. D. and Sidorowich, J. J. , “Predicting chaotic time series,” Phys. Rev. Lett. 59, 845848 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.845
13.
13.Feigenbaum, M. J. , “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys. 19, 2552 (1978).
http://dx.doi.org/10.1007/BF01020332
14.
14.Freitas, U. S. , Letellier, C. , and Aguirre, L. A. , “Failure in distinguishing colored noise from chaos using the noise titration technique,” Phys. Rev. E 79, 035201 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.035201
15.
15.Freitas, U. , Roulin, E. , Muir, J.-F. , and Letellier, C. , “Identifying chaos from heart rate: The right task?Chaos 19, 028505 (2009).
16.
16.Glass, L. , “Is cardiac chaos normal or abnormal?J. Cardiovasc. Electrophysiol. 1, 481482 (1990).
http://dx.doi.org/10.1111/j.1540-8167.1990.tb01080.x
17.
17.Glass, L. and Mackey, M. C. , From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988).
18.
18.Glass, L. and Malta, C. P. , “Chaos in multi-looped negative feedback systems,” J. Theor. Biol. 145, 217223 (1990).
http://dx.doi.org/10.1016/S0022-5193(05)80127-4
19.
19.Gleick, J. , Chaos: Making a New Science (Viking, New York, 1988).
20.
20.Goldberger, A. L. , Amaral, L. A. N. , Glass, L. , Hausdorff, J. M. , Ivanov, P. C. , Mark, R. G. , Mietus, J. E. , Moody, G. B. , Peng, C. K. , and Stanley, H. E. , “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation 101, e215e220 (2000).
21.
21.Goldberger, A. L. , Rigney, D. R. , and West, B. J. , “Chaos and fractals in human physiology,” Sci. Am. 262(2), 4249 (1990).
22.
22.Gomes, M. E. D. , Souza, A. V. P. , Guimaraes, H. N. , and Aguirre, L. A. , “Investigation of determinism in heart rate variability,” Chaos 10, 398410 (2000).
http://dx.doi.org/10.1063/1.166507
23.
23.Govindan, R. B. , Narayanan, K. , and Gopinathan, M. S. , “On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis,” Chaos 8, 495502 (1998).
http://dx.doi.org/10.1063/1.166330
24.
24.Guevara, M. R. , Glass, L. , and Shrier, A. , “Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells,” Science 214, 13501353 (1981).
http://dx.doi.org/10.1126/science.7313693
25.
25.Hu, J. , Gao, J. , and Tung, W.-W. , “Characterizing heart rate variability by scale-dependent Lyapunov exponent,” Chaos 19, 028506 (2009).
26.
26.Ivanov, P.-Ch. , Amaral, L. A. N. , Goldberger, A. L. , Havlin, S. , Rosenblum, M. G. , Struzik, Z. , and Stanley, H. E. , “Multifractality in human heartbeat dynamics,” Nature (London) 399, 461465 (1999).
http://dx.doi.org/10.1038/20924
27.
27.Kanters, J. K. , Holstein-Rathlou, N. H. , and Agner, E. , “Lack of evidence for low-dimensional chaos in heart rate variability,” J. Cardiovasc. Electrophysiol. 5, 591601 (1994).
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01300.x
28.
28.Kleiger, R. E. , Stein, P. K. , and Bigger, J. T. , “Heart rate variability: Measurement and clinical utility,” Ann. Noninvas. Electro. 10, 88101 (2005).
http://dx.doi.org/10.1111/j.1542-474X.2005.10101.x
29.
29.Klingenheben, T. , Zabel, M. , D’Agostino, R. B. , Cohen, R. J. , and Hohnloser, S. H. , “Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure,” Lancet 356, 651652 (2000).
http://dx.doi.org/10.1016/S0140-6736(00)02609-X
30.
30.Kobayashi, M. and Musha, T. , “ fluctuation of heartbeat period,” IEEE Trans. Biomed. Eng. BME-29, 456457 (1982).
http://dx.doi.org/10.1109/TBME.1982.324972
31.
31.Lefebvre, J. H. , Goodings, D. A. , Kamath, M. V. , and Fallen, E. L. , “Predictability of normal heart rhythms and deterministic chaos,” Chaos 3, 267276 (1993).
http://dx.doi.org/10.1063/1.165990
32.
32.Lei, M. and Meng, G. , “The influence of noise on nonlinear time series detection based on Volterra–Wiener–Korenberg model,” Chaos, Solitons Fractals 36, 512516 (2008).
http://dx.doi.org/10.1016/j.chaos.2006.06.084
33.
33.Li, T. Y. and Yorke, J. A. , “Period three implies chaos,” Am. Math. Monthly 82, 985992 (1975).
http://dx.doi.org/10.2307/2318254
34.
34.Mäkikallio, T. H. , Huikuri, H. V. , Mäkikallio, A. , Sourander, L. B. , Mitrani, R. D. , Castellanos, A. , and Myerburg, R. J. , “Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects,” J. Am. Coll. Cardiol. 37, 13951402 (2001).
http://dx.doi.org/10.1016/S0735-1097(01)01171-8
35.
35.May, R. M. , “Simple mathematical models with very complicated dynamics,” Nature (London) 261, 459467 (1976).
http://dx.doi.org/10.1038/261459a0
36.
36.Peng, C. K. , Havlin, S. , Stanley, H. E. , and Goldberger, A. L. , “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos 5, 8287 (1995).
http://dx.doi.org/10.1063/1.166141
37.
37.Pool, R. , “Is it healthy to be chaotic?Science 243, 604607 (1989).
http://dx.doi.org/10.1126/science.2916117
38.
38.Poon, C. S. and Barahona, M. , “Titration of chaos with added noise,” Proc. Natl. Acad. Sci. U.S.A. 98, 71077112 (2001).
http://dx.doi.org/10.1073/pnas.131173198
39.
39.Rapp, P. E. , “Chaos in the neurosciences: Cautionary tales from the frontier,” Biologist (London) 40, 8994 (1993).
40.
40.Ruelle, D. , “Where can one hope to profitably apply the ideas of chaos?Phys. Today 47(7), 2432 (1994).
http://dx.doi.org/10.1063/1.881395
41.
41.Säkki, M. , Kalda, J. , Vainu, M. , and Laan, M. , “What does measure the scaling exponent of the correlation sum in the case of human heart rate?Chaos 14, 138144 (2004).
http://dx.doi.org/10.1063/1.1636151
42.
42.Sassi, R. , Signorini, M. G. , and Cerutti, S. , “Multifractality and heart rate variability,” Chaos 19, 028507 (2009).
43.
43.Saul, J. P. , Berger, R. D. , Chen, M. H. , and Cohen, R. J. , “Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia,” Am. J. Physiol. Heart Circ. Physiol. 256, 153161 (1989).
44.
44.Skinner, J. E. , Goldberger, A. L. , Mayer-Kress, G. , and Ideker, R. E. , “Chaos in the heart: Implications for clinical cardiology,” Nat. Biotechnol. 8, 10181024 (1990).
http://dx.doi.org/10.1038/nbt1190-1018
45.
45.Sugihara, G. and May, R. , “Nonlinear forecasting as a way of distinguishing chaos from measurement error in forecasting,” Nature (London) 344, 734741 (1990).
http://dx.doi.org/10.1038/344734a0
46.
46.Wessel, N. , Riedl, M. , and Kurths, J. , “Is the normal heart rate ‘chaotic' due to respiration?Chaos 19, 028508 (2009).
47.
47.Wu, G. Q. , Arzeno, N. M. , Shen, L. L. , Tang, D. K. , Zheng, D. A. , Zhao, N. Q. , Eckberg, D. L. , and Poon, C. S. , “Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure,” PLoS ONE 4, e423 (2009).
48.
48.Zhang, J. Q. , Holden, A. V. , Monfredi, O. , Boyett, M. R. , and Zhang, H. , “Stochastic vagal modulation of cardiac pacemaking may lead to an erroneous identification of cardiac ‘chaos’,” Chaos 19, 028509 (2009).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/19/2/10.1063/1.3156832
Loading
/content/aip/journal/chaos/19/2/10.1063/1.3156832
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/19/2/10.1063/1.3156832
2009-06-30
2016-09-30

Abstract

In June 2008, the editors of Chaos decided to institute a new section to appear from time to time that addresses timely and controversial topics related to nonlinear science. The first of these deals with the dynamical characterization of human heart rate variability. We asked authors to respond to the following questions: Is the normal heart rate chaotic? If the normal heart rate is not chaotic, is there some more appropriate term to characterize the fluctuations (e.g., scaling, fractal, multifractal)? How does the analysis of heart rate variability elucidate the underlying mechanisms controlling the heart rate? Do any analyses of heart rate variability provide clinical information that can be useful in medical assessment (e.g., in helping to assess the risk of sudden cardiac death)? If so, please indicate what additional clinical studies would be useful for measures of heart rate variability to be more broadly accepted by the medical community. In addition, as a challenge for analysis methods, PhysioNet [A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation101, e215–e220 (2000)] provided data sets from 15 patients of whom five were normal, five had heart failure, and five had atrial fibrillation (http://www.physionet.org/challenge/chaos/). This introductory essay summarizes the main issues and introduces the essays that respond to these questions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/19/2/1.3156832.html;jsessionid=VhKbJUQ5kxw1AOkihQk-genW.x-aip-live-03?itemId=/content/aip/journal/chaos/19/2/10.1063/1.3156832&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/19/2/10.1063/1.3156832&pageURL=http://scitation.aip.org/content/aip/journal/chaos/19/2/10.1063/1.3156832'
Right1,Right2,Right3,