1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Synchronization transition of identical phase oscillators in a directed small-world network
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/20/3/10.1063/1.3476316
1.
1.G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks, Springer Series in Synergetics (Springer, Berlin, 2007).
2.
2.A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization : A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series Vol. 12 (Cambridge University Press, Cambridge, England, 2001).
3.
3.A. T. Winfree, The Geometry of Biological Time, Interdisciplinary Applied Mathematics Vol. 12, 2nd ed. (Springer-Verlag, New York, 2001).
4.
4.Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics Vol. 19 (Springer-Verlag, Berlin, 1984).
5.
5.A. Díaz-Guilera and A. Arenas, Bio-Inspired Computing and Communication (Springer-Verlag, Berlin, 2008), p. 184.
6.
6.S. Lämmer, H. Kori, K. Peters, and D. Helbing, Physica A 363, 39 (2006).
http://dx.doi.org/10.1016/j.physa.2006.01.047
7.
7.M. Silber, L. Fabiny, and K. Wiesenfeld, J. Opt. Soc. Am. B 10, 1121 (1993).
http://dx.doi.org/10.1364/JOSAB.10.001121
8.
8.Y. Kuramoto, International Symposium on Mathematical Problems in Theoretical Physics, Kyoto University, Kyoto, 1975, Lecture Notes in Physics Vol. 39 (Springer, Berlin, 1975), pp. 420422.
9.
9.J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E 71, 036151 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036151
10.
10.E. Ott and T. M. Antonsen, Chaos 18, 6 (2008).
11.
11.A. Pikovsky and M. Rosenblum, Physica D 238, 27 (2009).
http://dx.doi.org/10.1016/j.physd.2008.08.018
12.
12.T. -W. Ko and G. B. Ermentrout, Phys. Rev. E 78, 026210 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.026210
13.
13.D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
http://dx.doi.org/10.1038/30918
14.
14.M. E. J. Newman and D. J. Watts, Phys. Rev. E 60, 7332 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.7332
15.
15.M. Ostilli and J. F. F. Mendes, Phys. Rev. E 78, 031102 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.031102
16.
16.A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).
http://dx.doi.org/10.1007/s100510050067
17.
17.S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. E 66, 016104 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.016104
18.
18.H. Hong, M. Y. Choi, and B. J. Kim, Phys. Rev. E 65, 026139 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.026139
19.
19.B. Derrida and Y. Pomeau, EPL 1, 45 (1986).
http://dx.doi.org/10.1209/0295-5075/1/2/001
20.
20.K. Klemm and S. Bornholdt, Phys. Rev. E 72, 055101 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.055101
21.
21.A. Roxin, H. Riecke, and S. A. Solla, Phys. Rev. Lett. 92, 198101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.198101
22.
22.S. Jahnke, R. -M. Memmesheimer, and M. Timme, Phys. Rev. Lett. 100, 048102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.048102
23.
23.I. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys. Rev. Lett. 94, 248301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.248301
24.
24.B. Blasius and R. Tönjes, Phys. Rev. Lett. 95, 084101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.084101
25.
25.Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002).
26.
26.D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.174102
27.
27.R. Tönjes and B. Blasius, Phys. Rev. E 80, 026202 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.026202
28.
28.M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.054101
29.
29.H. Hinrichsen, Adv. Phys. 49, 815 (2000).
http://dx.doi.org/10.1080/00018730050198152
30.
30.V. Ahlers and A. Pikovsky, Phys. Rev. Lett. 88, 254101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.254101
31.
31.B. Gaveau and L. S. Schulman, J. Stat. Phys. 70, 613 (1993).
http://dx.doi.org/10.1007/BF01053587
32.
32.H. Risken, The Fokker-Planck Equation, Methods of Solution and Applications, Springer Series in Synergetics Vol. 18, 2nd ed. (Springer-Verlag, Berlin, 1989).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/3/10.1063/1.3476316
Loading
/content/aip/journal/chaos/20/3/10.1063/1.3476316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/20/3/10.1063/1.3476316
2010-08-11
2014-12-20

Abstract

We numerically study a directed small-world network consisting of attractively coupled, identical phase oscillators. While complete synchronization is always stable, it is not always reachable from random initial conditions. Depending on the shortcut density and on the asymmetry of the phase coupling function, there exists a regime of persistent chaotic dynamics. By increasing the density of shortcuts or decreasing the asymmetry of the phase coupling function, we observe a discontinuous transition in the ability of the system to synchronize. Using a control technique, we identify the bifurcation scenario of the order parameter. We also discuss the relation between dynamics and topology and remark on the similarity of the synchronization transition to directed percolation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/20/3/1.3476316.html;jsessionid=1ftl14k3ec6ih.x-aip-live-02?itemId=/content/aip/journal/chaos/20/3/10.1063/1.3476316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synchronization transition of identical phase oscillators in a directed small-world network
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/3/10.1063/1.3476316
10.1063/1.3476316
SEARCH_EXPAND_ITEM