1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/20/4/10.1063/1.3530118
1.
1.F. Corellou, C. Schwartz, J. -P. Motta, E. B. Djouani-Tahri, F. Sanchez, and F. -Y. Bouget, Plant Cell 21, 3436 (2009).
http://dx.doi.org/10.1105/tpc.109.068825
2.
2.Q. Thommen, B. Pfeuty, P. Morant, F. Correlou, F. Bouget, and M. Lefranc, PLOS Comput. Biol. 6, e1000990 (2010) .
http://dx.doi.org/10.1371/journal.pcbi.1000990
3.
3.A. Goldbeter, Biochemical Oscillations and Cellular Rhythms (Cambridge University Press, Cambridge, 1996).
http://dx.doi.org/10.1017/CBO9780511608193
4.
4.J. Hasty, A. Hoffmann, and S. Golden, Curr. Opin. Genet. Dev. 20, 571 (2010).
http://dx.doi.org/10.1016/j.gde.2010.10.003
5.
5.A. T. Winfree, The Geometry of Biological Time, 3rd ed. (Springer-Verlag, Berlin, 2001).
6.
6.Molecular Genetics of Biological Rhythms, edited by M. W. Young (Dekker, New York, 1993).
7.
7.M. Elowitz and S. Leibler, Nature (London) 403, 335 (2000).
http://dx.doi.org/10.1038/35002125
8.
8.J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, Nature (London) 456, 516 (2008).
http://dx.doi.org/10.1038/nature07389
9.
9.L. Hartwell, J. Hopfield, S. Leibler, and A. Murray, Nature (London) 402, C47 (1999).
http://dx.doi.org/10.1038/35011540
10.
10.G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, and K. Sneppen, Phys. Biol. 4, R1 (2007).
http://dx.doi.org/10.1088/1478-3975/4/2/R01
11.
11.B. Mengel, A. Hunziker, L. Pedersen, A. Trusina, M. H. Jensen, and S. Krishna, Curr. Opin. Genet. Dev. 20, 656 (2010).
http://dx.doi.org/10.1016/j.gde.2010.08.008
12.
12.D. A. Rand, B. V. Shulgin, D. Salazar, and A. J. Millar, J. R. Soc., Interface 1, 119 (2004).
http://dx.doi.org/10.1098/rsif.2004.0014
13.
13.C. S. Pittendrigh, Cold Spring Harbor Symp. Quant. Biol. 25, 159 (1960).
14.
14.A. N. Dodd, N. Salathia, A. Hall, E. Kevei, R. Toth, F. Nagy, J. Hibberd, A. J. Millar, and A. A. Webb, Science 309, 630 (2005).
http://dx.doi.org/10.1126/science.1115581
15.
15.M. Moulager, A. Monnier, B. Jesson, R. Bouvet, J. Mosser, C. Schwartz, L. Garnier, F. Corellou, and F. -Y. Bouget, Plant Physiol. 144, 1360 (2007).
http://dx.doi.org/10.1104/pp.107.096149
16.
16.A. Monnier, S. Liverani, R. Bouvet, B. Jesson, J. Smith, J. Mosser, F. Corellou, and F. Bouget, BMC Genomics 11, 192 (2010).
http://dx.doi.org/10.1186/1471-2164-11-192
17.
17.D. Gonze, J. Halloy, and A. Goldbeter, Proc. Natl. Acad. Sci. U.S.A. 99, 673 (2002).
http://dx.doi.org/10.1073/pnas.022628299
18.
18.N. Barkai and S. Leibler, Nature (London) 403, 267 (2000).
19.
19.C. S. Pittendrigh, Proc. Natl. Acad. Sci. U.S.A. 40, 1018 (1954).
http://dx.doi.org/10.1073/pnas.40.10.1018
20.
20.L. Rensing and P. Ruoff, Chronobiol Int. 19, 807 (2002).
http://dx.doi.org/10.1081/CBI-120014569
21.
21.M. Comas, D. Beersma, R. Hut, and S. Daan, J. Biol. Rhythms 23, 425 (2008).
http://dx.doi.org/10.1177/0748730408321567
22.
22.D. G. M. Beersma, S. Daan, and R. A. Hut, J. Biol. Rhythms 14, 320 (1999).
http://dx.doi.org/10.1177/074873099129000740
23.
23.C. Troein, J. C. W. Locke, M. S. Turner, and A. J. Millar, Curr. Biol. 19, 1961 (2009).
http://dx.doi.org/10.1016/j.cub.2009.09.024
24.
24.J. C. Dunlap, Cell 96, 271 (1999).
http://dx.doi.org/10.1016/S0092-8674(00)80566-8
25.
25.M. W. Young and S. Kay, Nat. Genet. 2, 702 (2001).
26.
26.S. Panda, J. B. Hogenesch, and S. A. Kay, Nature (London) 417, 329 (2002).
http://dx.doi.org/10.1038/417329a
27.
27.D. B. Forger and C. S. Peskin, Proc. Natl. Acad. Sci. U.S.A. 100, 14806 (2003).
http://dx.doi.org/10.1073/pnas.2036281100
28.
28.D. B. Forger, D. A. Dean II, K. Gurdziel, J. -C. Leloup, C. Lee, C. Von Gall, J. -P. Etchegaray, R. E. Kronauer, A. Goldbeter, C. S. Peskin, M. E. Jewett, and D. R. Weaver, OMICS 7, 387 (2003).
http://dx.doi.org/10.1089/153623103322637698
29.
29.J. C. W. Locke, M. M. Southern, L. Kozma-Bognr, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar, Mol. Syst. Biol. 1, 20050013 (2005).
http://dx.doi.org/10.1038/msb4100018
30.
30.J. C. W. Locke, L. Kozma-Bognar, P. D. Gould, B. Feher, E. Kevei, F. Nagy, M. S. Turner, A. Hall, and A. J. Millar, Mol. Syst. Biol. 2, 59 (2006).
http://dx.doi.org/10.1038/msb4100102
31.
31.M. N. Zeilinger, E. M. Farre, S. R. Taylor, and S. A. Kay, Mol. Syst. Biol. 2, 58 (2006).
http://dx.doi.org/10.1038/msb4100101
32.
32.J. D. Salazar, T. Saithong, P. E. Brown, J. Foreman, J. C. W. Locke, K. J. Halliday, I. A. Carré, D. A. Rand, and A. J. Millar, Cell 139, 1170 (2009).
http://dx.doi.org/10.1016/j.cell.2009.11.029
33.
33.P. François, Biophys. J. 88, 2369 (2005).
http://dx.doi.org/10.1529/biophysj.104.053975
34.
34.C. Courties, A. Vaquer, M. Troussellier, J. Lautier, M. J. Chretiennot-Dinet, J. Neveux, M. C. Machado, and H. Claustre, Nature (London) 370, 255 (1994).
http://dx.doi.org/10.1038/370255a0
35.
35.M. J. Chrétiennot-Dinet, C. Courties, A. Vaquer, J. Neveux, H. Claustre, J. Lautier, and M. C. Machado, Phycologia 34, 285 (1995).
http://dx.doi.org/10.2216/i0031-8884-34-4-285.1
36.
36.E. Derelle, C. Ferraz, S. Rombauts, P. Rouzé, A. Z. Worden, S. Robbens, F. Partensky, S. Degroeve, S. Echeynié, R. Cooke, Y. Saeys, J. Wuyts, K. Jabbari, C. Bowler, O. Panaud, B. Piégu, S. G. Ball, J. -P. Ral, F. -Y. Bouget, G. Piganeau, B. De Baets, A. Picard, M. Delseny, J. Demaille, Y. Van de Peer, and H. Moreau, Proc. Natl. Acad. Sci. U.S.A. 103, 11647 (2006).
http://dx.doi.org/10.1073/pnas.0604795103
37.
37.E. Djouani-Tahri, J. -P. Motta, F. -Y. Bouget, and F. Corellou, Plant Signal Behav. 5, 332 (2010).
http://dx.doi.org/10.4161/psb.5.3.11212
38.
38.D. Alabadi, T. Oyama, M. J. Yanovsky, F. G. Harmon, P. Mas, and S. A. Kay, Science 293, 880 (2001).
http://dx.doi.org/10.1126/science.1061320
39.
39.B. Gates and M. DeLuca, Arch. Biochem. Biophys. 169, 616 (1975).
http://dx.doi.org/10.1016/0003-9861(75)90205-2
40.
40.M. Lefranc, D. Hennequin, and P. Glorieux, Phys. Lett. A 163, 269 (1992).
http://dx.doi.org/10.1016/0375-9601(92)91011-F
41.
41.C. Letellier and L. A. Aguirre, Phys. Rev. E 82, 016204 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.016204
42.
42.R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna, PLOS Comput. Biol. 3, e189 (2007).
http://dx.doi.org/10.1371/journal.pcbi.0030189
43.
43.G. Kurosawa and Y. Isawa, J. Biol. Rhythms 17, 568 (2002).
http://dx.doi.org/10.1177/0748730402238239
44.
44.W. W. Wong, T. Y. Tsai, and J. C. Liao, Mol. Syst. Biol. 3, 130 (2007).
http://dx.doi.org/10.1038/msb4100172
45.
45.P. -E. Morant, Q. Thommen, F. Lemaire, C. Vandermoere, B. Parent, and M. Lefranc, Phys. Rev. Lett. 102, 068104 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068104
46.
46.W. Mather, M. R. Bennett, J. Hasty, and L. S. Tsimring, Phys. Rev. Lett. 102, 068105 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068105
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/4/10.1063/1.3530118
Loading
/content/aip/journal/chaos/20/4/10.1063/1.3530118
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/20/4/10.1063/1.3530118
2010-12-30
2014-10-31

Abstract

The microscopic green alga Ostreococcus tauri is rapidly emerging as a promising model organism in the green lineage. In particular, recent results by Corellou et al. [Plant Cell21, 3436 (2009)]and Thommen et al. [PLOS Comput. Biol.6, e1000990 (2010)] strongly suggest that its circadian clock is a simplified version of Arabidopsis thalianaclock, and that it is architectured so as to be robust to natural daylight fluctuations. In this work, we analyze the time series data from luminescent reporters for the two central clock genes TOC1 and CCA1 and correlate them with microarray data previously analyzed. Our mathematical analysis strongly supports both the existence of a simple two-gene oscillator at the core of Ostreococcus tauriclock and the fact that its dynamics is not affected by light in normal entrainment conditions, a signature of its robustness.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/20/4/1.3530118.html;jsessionid=3uhhheijol7eg.x-aip-live-02?itemId=/content/aip/journal/chaos/20/4/10.1063/1.3530118&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/4/10.1063/1.3530118
10.1063/1.3530118
SEARCH_EXPAND_ITEM