1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/20/4/10.1063/1.3530118
1.
1.F. Corellou, C. Schwartz, J. -P. Motta, E. B. Djouani-Tahri, F. Sanchez, and F. -Y. Bouget, Plant Cell 21, 3436 (2009).
http://dx.doi.org/10.1105/tpc.109.068825
2.
2.Q. Thommen, B. Pfeuty, P. Morant, F. Correlou, F. Bouget, and M. Lefranc, PLOS Comput. Biol. 6, e1000990 (2010) .
http://dx.doi.org/10.1371/journal.pcbi.1000990
3.
3.A. Goldbeter, Biochemical Oscillations and Cellular Rhythms (Cambridge University Press, Cambridge, 1996).
http://dx.doi.org/10.1017/CBO9780511608193
4.
4.J. Hasty, A. Hoffmann, and S. Golden, Curr. Opin. Genet. Dev. 20, 571 (2010).
http://dx.doi.org/10.1016/j.gde.2010.10.003
5.
5.A. T. Winfree, The Geometry of Biological Time, 3rd ed. (Springer-Verlag, Berlin, 2001).
6.
6.Molecular Genetics of Biological Rhythms, edited by M. W. Young (Dekker, New York, 1993).
7.
7.M. Elowitz and S. Leibler, Nature (London) 403, 335 (2000).
http://dx.doi.org/10.1038/35002125
8.
8.J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, Nature (London) 456, 516 (2008).
http://dx.doi.org/10.1038/nature07389
9.
9.L. Hartwell, J. Hopfield, S. Leibler, and A. Murray, Nature (London) 402, C47 (1999).
http://dx.doi.org/10.1038/35011540
10.
10.G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, and K. Sneppen, Phys. Biol. 4, R1 (2007).
http://dx.doi.org/10.1088/1478-3975/4/2/R01
11.
11.B. Mengel, A. Hunziker, L. Pedersen, A. Trusina, M. H. Jensen, and S. Krishna, Curr. Opin. Genet. Dev. 20, 656 (2010).
http://dx.doi.org/10.1016/j.gde.2010.08.008
12.
12.D. A. Rand, B. V. Shulgin, D. Salazar, and A. J. Millar, J. R. Soc., Interface 1, 119 (2004).
http://dx.doi.org/10.1098/rsif.2004.0014
13.
13.C. S. Pittendrigh, Cold Spring Harbor Symp. Quant. Biol. 25, 159 (1960).
14.
14.A. N. Dodd, N. Salathia, A. Hall, E. Kevei, R. Toth, F. Nagy, J. Hibberd, A. J. Millar, and A. A. Webb, Science 309, 630 (2005).
http://dx.doi.org/10.1126/science.1115581
15.
15.M. Moulager, A. Monnier, B. Jesson, R. Bouvet, J. Mosser, C. Schwartz, L. Garnier, F. Corellou, and F. -Y. Bouget, Plant Physiol. 144, 1360 (2007).
http://dx.doi.org/10.1104/pp.107.096149
16.
16.A. Monnier, S. Liverani, R. Bouvet, B. Jesson, J. Smith, J. Mosser, F. Corellou, and F. Bouget, BMC Genomics 11, 192 (2010).
http://dx.doi.org/10.1186/1471-2164-11-192
17.
17.D. Gonze, J. Halloy, and A. Goldbeter, Proc. Natl. Acad. Sci. U.S.A. 99, 673 (2002).
http://dx.doi.org/10.1073/pnas.022628299
18.
18.N. Barkai and S. Leibler, Nature (London) 403, 267 (2000).
19.
19.C. S. Pittendrigh, Proc. Natl. Acad. Sci. U.S.A. 40, 1018 (1954).
http://dx.doi.org/10.1073/pnas.40.10.1018
20.
20.L. Rensing and P. Ruoff, Chronobiol Int. 19, 807 (2002).
http://dx.doi.org/10.1081/CBI-120014569
21.
21.M. Comas, D. Beersma, R. Hut, and S. Daan, J. Biol. Rhythms 23, 425 (2008).
http://dx.doi.org/10.1177/0748730408321567
22.
22.D. G. M. Beersma, S. Daan, and R. A. Hut, J. Biol. Rhythms 14, 320 (1999).
http://dx.doi.org/10.1177/074873099129000740
23.
23.C. Troein, J. C. W. Locke, M. S. Turner, and A. J. Millar, Curr. Biol. 19, 1961 (2009).
http://dx.doi.org/10.1016/j.cub.2009.09.024
24.
24.J. C. Dunlap, Cell 96, 271 (1999).
http://dx.doi.org/10.1016/S0092-8674(00)80566-8
25.
25.M. W. Young and S. Kay, Nat. Genet. 2, 702 (2001).
26.
26.S. Panda, J. B. Hogenesch, and S. A. Kay, Nature (London) 417, 329 (2002).
http://dx.doi.org/10.1038/417329a
27.
27.D. B. Forger and C. S. Peskin, Proc. Natl. Acad. Sci. U.S.A. 100, 14806 (2003).
http://dx.doi.org/10.1073/pnas.2036281100
28.
28.D. B. Forger, D. A. Dean II, K. Gurdziel, J. -C. Leloup, C. Lee, C. Von Gall, J. -P. Etchegaray, R. E. Kronauer, A. Goldbeter, C. S. Peskin, M. E. Jewett, and D. R. Weaver, OMICS 7, 387 (2003).
http://dx.doi.org/10.1089/153623103322637698
29.
29.J. C. W. Locke, M. M. Southern, L. Kozma-Bognr, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar, Mol. Syst. Biol. 1, 20050013 (2005).
http://dx.doi.org/10.1038/msb4100018
30.
30.J. C. W. Locke, L. Kozma-Bognar, P. D. Gould, B. Feher, E. Kevei, F. Nagy, M. S. Turner, A. Hall, and A. J. Millar, Mol. Syst. Biol. 2, 59 (2006).
http://dx.doi.org/10.1038/msb4100102
31.
31.M. N. Zeilinger, E. M. Farre, S. R. Taylor, and S. A. Kay, Mol. Syst. Biol. 2, 58 (2006).
http://dx.doi.org/10.1038/msb4100101
32.
32.J. D. Salazar, T. Saithong, P. E. Brown, J. Foreman, J. C. W. Locke, K. J. Halliday, I. A. Carré, D. A. Rand, and A. J. Millar, Cell 139, 1170 (2009).
http://dx.doi.org/10.1016/j.cell.2009.11.029
33.
33.P. François, Biophys. J. 88, 2369 (2005).
http://dx.doi.org/10.1529/biophysj.104.053975
34.
34.C. Courties, A. Vaquer, M. Troussellier, J. Lautier, M. J. Chretiennot-Dinet, J. Neveux, M. C. Machado, and H. Claustre, Nature (London) 370, 255 (1994).
http://dx.doi.org/10.1038/370255a0
35.
35.M. J. Chrétiennot-Dinet, C. Courties, A. Vaquer, J. Neveux, H. Claustre, J. Lautier, and M. C. Machado, Phycologia 34, 285 (1995).
http://dx.doi.org/10.2216/i0031-8884-34-4-285.1
36.
36.E. Derelle, C. Ferraz, S. Rombauts, P. Rouzé, A. Z. Worden, S. Robbens, F. Partensky, S. Degroeve, S. Echeynié, R. Cooke, Y. Saeys, J. Wuyts, K. Jabbari, C. Bowler, O. Panaud, B. Piégu, S. G. Ball, J. -P. Ral, F. -Y. Bouget, G. Piganeau, B. De Baets, A. Picard, M. Delseny, J. Demaille, Y. Van de Peer, and H. Moreau, Proc. Natl. Acad. Sci. U.S.A. 103, 11647 (2006).
http://dx.doi.org/10.1073/pnas.0604795103
37.
37.E. Djouani-Tahri, J. -P. Motta, F. -Y. Bouget, and F. Corellou, Plant Signal Behav. 5, 332 (2010).
http://dx.doi.org/10.4161/psb.5.3.11212
38.
38.D. Alabadi, T. Oyama, M. J. Yanovsky, F. G. Harmon, P. Mas, and S. A. Kay, Science 293, 880 (2001).
http://dx.doi.org/10.1126/science.1061320
39.
39.B. Gates and M. DeLuca, Arch. Biochem. Biophys. 169, 616 (1975).
http://dx.doi.org/10.1016/0003-9861(75)90205-2
40.
40.M. Lefranc, D. Hennequin, and P. Glorieux, Phys. Lett. A 163, 269 (1992).
http://dx.doi.org/10.1016/0375-9601(92)91011-F
41.
41.C. Letellier and L. A. Aguirre, Phys. Rev. E 82, 016204 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.016204
42.
42.R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna, PLOS Comput. Biol. 3, e189 (2007).
http://dx.doi.org/10.1371/journal.pcbi.0030189
43.
43.G. Kurosawa and Y. Isawa, J. Biol. Rhythms 17, 568 (2002).
http://dx.doi.org/10.1177/0748730402238239
44.
44.W. W. Wong, T. Y. Tsai, and J. C. Liao, Mol. Syst. Biol. 3, 130 (2007).
http://dx.doi.org/10.1038/msb4100172
45.
45.P. -E. Morant, Q. Thommen, F. Lemaire, C. Vandermoere, B. Parent, and M. Lefranc, Phys. Rev. Lett. 102, 068104 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068104
46.
46.W. Mather, M. R. Bennett, J. Hasty, and L. S. Tsimring, Phys. Rev. Lett. 102, 068105 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068105
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/4/10.1063/1.3530118
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Construction of RNA target profiles as functions of Zeitgeber time (ZT) describing phases within the dark/light cycle, with time ZT0 that corresponds to dawn and time ZT12 to dusk. Interpolating curves going through data points (dots) are represented. (a) Interpolated curves from microarray data using cubic splines. (b) The exponentials of the interpolating curves were computed to obtain a smooth approximation of mRNA profiles. Large dots indicate passages through levels corresponding to 20% and 80% of maximum amplitude and serve as target points for adjustment.

Image of FIG. 2.

Click to view

FIG. 2.

Reconstruction of protein target profiles as functions of ZT describing phases within the dark/light cycle, with time ZT0 that corresponds to dawn and time ZT12 to dusk. (a) Luminescence time series (dashed lines) for individual wells are fitted by the product of a Fourier series of period 24 h with five harmonics by a slowly varying polynomial function of degree 4 (solid lines). The slowly varying envelope is also shown with a dotted line. From top to bottom, the first (last) two panels correspond to two TOC1:luc (CCA1:luc) translational fusion lines with different insertions in the genome. The different Fourier series are normalized to have the same maximum and are averaged. (b) The average Fourier series (dashed lines, black: TOC1, gray: CCA1) provides a smooth approximation to the cloud of individual line time profiles renormalized using the slowly varying polynomial function and wrapped around 24 h (thin solid lines). Large dots indicate passages through levels corresponding to 20% and 80% of maximum amplitude and serve as target points for adjustment.

Image of FIG. 3.

Click to view

FIG. 3.

Translational fusion lines data recorded under 12:12 LD alternation. Time zero corresponds to dawn. On the top panel (respectively, bottom panel), the time evolution of photon count (in relative luminescence units) of CCA1 (respectively, TOC1) translational fusion lines is drawn for two biological duplicates monitored at the same time in the same conditions (black and gray thin solid lines). Their difference is plotted as a thick black solid line.

Image of FIG. 4.

Click to view

FIG. 4.

Adjustment of numerical solutions of the free-running model with FRP equal to 24 h (solid lines) to target curves (dot-dashed lines) using various score functions. Panels (a)–(d) in left column show the adjustment of mRNA and protein profiles without bias correction using score functions (black solid line), (dark gray-blue thin solid line), and (light gray or red thin solid line). See text for the definition of score functions. Panels (e)–(h) in right column show the adjustment of mRNA and protein profiles with protein floor level removed using score functions (black solid line), (light gray-red thin solid line), and (dark gray or blue thin solid line). [(a) and (e)] CCA1 mRNA. [(b) and (f)] CCA1 protein. [(c) and (g)] TOC1 mRNA. [(d) and (h)] TOC1 protein.

Image of FIG. 5.

Click to view

FIG. 5.

Adjustment of numerical solutions of the light-dependent model (solid lines) to target curves with floor levels removed (dot-dashed line) using the score function. Adjustment of (a) CCA1 mRNA, (b) CCA1 protein, (c) TOC1 mRNA, and (d) TOC1 protein without the floor level of proteins. The FRP of the autonomous oscillator is either of 25 h (black solid line) or 23.8 h (light gray or red solid line). Synchronization is obtained for the 25 h (respectively, 23.8 h) FRP model by assuming that the parameter (respectively, ) takes a different value at day and at night.

Tables

Generic image for table

Click to view

Table I.

Model parameter values. Optimal parameter values for adjustment of model to data using various score functions, assuming a free-running period of 24 h. Parameters are rescaled so that the maximum value of protein profiles is 100 nM, and the maximum value of CCA1 (respectively, TOC1) mRNA profile is 10 nM (respectively, 70 nM). The TOC1 and CCA1 mRNA maximum values are chosen in the same proportion as in microarray data. The third row of the table indicates whether the floor levels of luminescence data are removed (R) or not (NR). The last part of the table gives the degradation rate at the mean value ; for each species.

Generic image for table

Click to view

Table II.

Model parameter values. Optimal parameter values for adjustment of model to data using various score functions and assuming a free-running period of 25 or 23.8 h. Parameters are rescaled as in Table I.

Loading

Article metrics loading...

/content/aip/journal/chaos/20/4/10.1063/1.3530118
2010-12-30
2014-04-16

Abstract

The microscopic green alga Ostreococcus tauri is rapidly emerging as a promising model organism in the green lineage. In particular, recent results by Corellou et al. [Plant Cell21, 3436 (2009)]and Thommen et al. [PLOS Comput. Biol.6, e1000990 (2010)] strongly suggest that its circadian clock is a simplified version of Arabidopsis thalianaclock, and that it is architectured so as to be robust to natural daylight fluctuations. In this work, we analyze the time series data from luminescent reporters for the two central clock genes TOC1 and CCA1 and correlate them with microarray data previously analyzed. Our mathematical analysis strongly supports both the existence of a simple two-gene oscillator at the core of Ostreococcus tauriclock and the fact that its dynamics is not affected by light in normal entrainment conditions, a signature of its robustness.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/20/4/1.3530118.html;jsessionid=3cdsuasofclp4.x-aip-live-02?itemId=/content/aip/journal/chaos/20/4/10.1063/1.3530118&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock
http://aip.metastore.ingenta.com/content/aip/journal/chaos/20/4/10.1063/1.3530118
10.1063/1.3530118
SEARCH_EXPAND_ITEM