1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/21/1/10.1063/1.3543800
1.
1. A. Madi, I. Hecht, S. Bransburg-Zabary, Y. Merbl, A. Pick, M. Zucker-Toledano, F. J. Quintana, A. I. Tauber, I. R. Cohen, and E. Ben-Jacob, Proc. Natl. Acad. Sci. U. S. A. 106, 14484 (2009).
http://dx.doi.org/10.1073/pnas.0901528106
2.
2. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47(2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
3.
3. R. L. Graham and P. Hell, IEEE Ann. Hist. Comput. 7, 43 (1985).
http://dx.doi.org/10.1109/MAHC.1985.10011
4.
4. R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations Complexity in Finance (Cambridge University Press, Cambridge UK, 2000).
5.
5. A. Madi, D. Y. Kenett, S. Bransburg-Zabary, Y. Merb, F. J. Quintana, A. I. Tauber, I. R. Cohen, and E. Ben-Jacob, PLoS One 6, e17445 (2011).
http://dx.doi.org/10.1371/journal.pone.0017445
6.
6. M. E. J. Newman, SIAM Rev. 45, 167 (2003).
http://dx.doi.org/10.1137/S003614450342480
7.
7. J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, London, United Kingdom, 2000).
8.
8. W. Shipley, Cause Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations, and Causal Inference (Cambridge University Press, Cambridge, United Kingdom, 2000).
9.
9. P. Spirtes, C. Glymour, and R. Scheines, Causality, Prediction, and Search (Springer Verlag, New York, 2000).
10.
10. D. Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R. N. Mantegna, and E. Ben-Jacob, PLoS ONE 5(12), e15032 (2010).
http://dx.doi.org/doi:10.1371/journal.pone.0015032
11.
11. A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, Bioinformatics 20, 3565 (2004).
http://dx.doi.org/10.1093/bioinformatics/bth445
12.
12. A. Reverter and E. K. F. Chan, Bioinformatics 24, 2491 (2008).
http://dx.doi.org/10.1093/bioinformatics/btn482
13.
13. Y. Shapira, D. Y. Kenett, and E. Ben-Jacob, Eur. Phys. J. B 72, 657 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00384-y
14.
14. U. Lee and S. Kim, Phys. Rev. E 73, 041920 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041920
15.
15. M. E. Newman, Proc. Natl. Acad. Sci. U. S. A. 103, 8577 (2006).
http://dx.doi.org/10.1073/pnas.0601602103
16.
16. J. L. Rodgers and W. A. Nicewander, Am. Stat. 42, 59 (1988).
http://dx.doi.org/10.2307/2685263
17.
17. K. Baba, Aust. N. Z. J. Stat. 46, 657 (2004).
http://dx.doi.org/10.1111/j.1467-842X.2004.00360.x
18.
18. E. Fuchs, A. Ayali, E. Ben-Jacob, and S. Boccaletti, Phys. Biol. 6, 36018 (2009).
http://dx.doi.org/10.1088/1478-3975/6/3/036018
19.
19. C. Coronnello, M. Tumminello, F. Lillo, and R. N. Mantegna, Acta. Phys. Pol. B 36, 2653 (2005).
20.
20. H. de Jong, J. Comput. Biol. 9, 67 (2002).
http://dx.doi.org/10.1089/10665270252833208
21.
21. R. N. Mantegna, Eur. Phys. J. B 11, 193 (1999).
http://dx.doi.org/10.1007/s100510050929
22.
22. R. N. Mantegna, Comput. Phys. Commun. 121–122, 153 (1999).
http://dx.doi.org/10.1016/S0010-4655(99)00302-1
23.
23. G. J. Ortega, R. G. Sola, and J. Pastor, Neurosci. Lett. 447, 129 (2008).
http://dx.doi.org/10.1016/j.neulet.2008.09.080
24.
24. M. Tumminello, C. Coronnello, F. Lillo, S. Miccichè, and R. N. Mantegna, Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 2319 (2007).
http://dx.doi.org/10.1142/S0218127407018415
25.
25. D. B. West, An Introduction to Graph Theory (Prentice-Hall, Englewood Cliffs, NJ, 2001).
26.
26. M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna, Proc. Natl. Acad. Sci. U. S. A. 102, 10421 (2005).
http://dx.doi.org/10.1073/pnas.0500298102
27.
27. S.-G. Lee and S. Kim, Phys. Rev. E 73, 041924 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041924
28.
28. Non-linear Structures in Physical Systems—Pattern Formation, Chaos and Waves, edited by L. Lam and H. C. Morris (Springer-Verlag, New York, 1990).
29.
29. S. Boccaletti, V. Latora, Y. Moreno, and M. Chavez, Phys. Rep. 424, 175 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
30.
30. L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, J. Stat. Mech.: Theory Exp. 2005, P09008.
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
31.
31. A. Madi, Y. Friedman, D. Roth, T. Regev, S. Bransburg-Zabary, and E. Ben Jacob, PLoS One 3, e2708 (2008).
http://dx.doi.org/10.1371/journal.pone.0002708.t002
32.
32. M. E. J. Newman, Eur. Phys. J. B 38, 321 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00124-y
33.
33. T. Kamada and S. Kawai, Inf. Process. Lett. 31, 7 (1989).
http://dx.doi.org/10.1016/0020-0190(89)90102-6
34.
34. T. M. J. Fruchterman and E. M. Reingold, Softw.: Pract. Exp. 21, 1129 (1991).
http://dx.doi.org/10.1002/spe.4380211102
35.
35. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, Nature (London) 402, C47 (1999).
http://dx.doi.org/10.1038/35011540
36.
36. D. M. Wolf and A. P. Arkin, Curr. Opin. Microbiol. 6, 125 (2003).
http://dx.doi.org/10.1016/S1369-5274(03)00033-X
37.
37. E. Segal, N. Friedman, D. Koller, and A. Regev, Nat. Genet. 36, 1090 (2004).
http://dx.doi.org/10.1038/ng1434
38.
38. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, Nat. Genet. 34, 166 (2003).
http://dx.doi.org/10.1038/ng1165
39.
39. B. Snel and M. A. Huynen, Genome Res. 14, 391 (2004).
http://dx.doi.org/10.1101/gr.1969504
40.
40. C. O. Wilke and C. Adami, Mutat. Res. 522, 3 (2003).
http://dx.doi.org/10.1016/S0027-5107(02)00307-X
41.
41. Y. Louzoun, S. Solomon, H. Atlan, and I. Cohen, Physica A 297, 242 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00201-1
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/1/10.1063/1.3543800
Loading
/content/aip/journal/chaos/21/1/10.1063/1.3543800
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/21/1/10.1063/1.3543800
2011-03-29
2014-10-30

Abstract

Much effort has been devoted to assess the importance of nodes in complex biological networks (such as gene transcriptional regulatory networks,protein interaction networks, and neural networks). Examples of commonly used measures of node importance include node degree, node centrality, and node vulnerability score (the effect of the node deletion on the network efficiency). Here, we present a new approach to compute and investigate the mutual dependencies between network nodes from the matrices of node-node correlations. To this end, we first define the dependency of node i on node j (or the influence of node j on node i), D(i, j) as the average over all nodes k of the difference between the i − k correlation and the partial correlations between these nodes with respect to node j. Note that the dependencies, D(i, j) define a directed weighted matrix, since, in general, D(i, j) differs from D( j, i). For this reason, many of the commonly used measures of node importance, such as node centrality, cannot be used. Hence, to assess the node importance of the dependency networks, we define the system level influence (SLI) of antigen j, SLI( j) as the sum of the influence of j on all other antigens i. Next, we define the system level influence or the influence score of antigen j, SLI( j) as the sum of D(i, j) over all nodes i. We introduce the new approach and demonstrate that it can unveil important biological information in the context of the immune system. More specifically, we investigated antigen dependency networks computed from antigen microarray data of autoantibody reactivity of IgM and IgG isotypes present in the sera of ten mothers and their newborns. We found that the analysis was able to unveil that there is only a subset of antigens that have high influence scores (SLI) common both to the mothers and newborns. Networks comparison in terms of modularity (using the Newman’s algorithm) and of topology (measured by the divergence rate) revealed that, at birth, the IgG networks exhibit a more profound global reorganization while the IgM networks exhibit a more profound local reorganization. During immune system development, the modularity of the IgG network increases and becomes comparable to that of the IgM networks at adulthood. We also found the existence of several conserved IgG and IgM network motifs between the maternal and newborns networks, which might retain networkinformation as our immune system develops. If correct, these findings provide a convincing demonstration of the effectiveness of the new approach to unveil most significant biological information. Whereas we have introduced the new approach within the context of the immune system, it is expected to be effective in the studies of other complex biological social, financial, and manmade networks.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/21/1/1.3543800.html;jsessionid=h5ztpfrib2ze.x-aip-live-06?itemId=/content/aip/journal/chaos/21/1/10.1063/1.3543800&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/1/10.1063/1.3543800
10.1063/1.3543800
SEARCH_EXPAND_ITEM