Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/21/1/10.1063/1.3563577
1.
1. Y. Huang and V. Yang, Prog. Energy Combust. Sci. 35, 293 (2009).
http://dx.doi.org/10.1016/j.pecs.2009.01.002
2.
2. S. Candel, Proc. Combust. Inst. 29, 1 (2002).
http://dx.doi.org/10.1016/S1540-7489(02)80007-4
3.
3. T. Poinsot, A. Trouve, D. Veynante, S. Candel, and E. Esposito, J. Fluid Mech. 177, 265 (1987).
http://dx.doi.org/10.1017/S0022112087000958
4.
4. K. C. Schadow and E. J. Gutmark, Prog. Energy Combust. Sci. 18, 117 (1992).
http://dx.doi.org/10.1016/0360-1285(92)90020-2
5.
5. W. P. Shih, J. G. Lee, and D. A. Santavicca, Sym. (Int.) Combust., [Proc.] 26, 2771 (1996).
http://dx.doi.org/10.1016/S0082-0784(96)80115-9
6.
6. T. C. Lieuwen, J. Propul. Power 18, 61 (2002).
http://dx.doi.org/10.2514/2.5898
7.
7. A. P. Dowling and A. S. Morgans, Annu. Rev. Fluid Mech. 37, 151 (2005).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122038
8.
8. S. Tachibana, L. Zimmer, Y. Kurosawa, and K. Suzuki, Nagare 25, 219 (2006).
9.
9. S. Tachibana, L. Zimmer, Y. Kurosawa, and K. Suzuki, Proc. Combust. Inst. 31, 3225 (2007).
http://dx.doi.org/10.1016/j.proci.2006.08.037
10.
10. C. S. Daw, J. F. Thomas, G. A. Richards, and L. L. Narayanaswami, Choas 5, 662 (1995).
http://dx.doi.org/10.1063/1.166137
11.
11. S. Datta, S. Mondal, A. Mukhopadhyay, D. Sanyal, and S. Sen, Combust. Theory Modell. 13, 17 (2009).
http://dx.doi.org/10.1080/13647830802360729
12.
12. H. D. Ng, A. J. Higgins, C. B. Kiyanda, M. I. Radulescu, J. H. S. Lee, K. R. Bates, and N. Nikiforakis, Combust. Theory Modell. 9, 159 (2009).
http://dx.doi.org/10.1080/13647830500098357
13.
13. S. Kadowaki and N. Ohkura, Trans. Jpn. Soc. Aeronaut. Space Sci. 51, 133 (2009).
http://dx.doi.org/10.2322/tjsass.51.133
14.
14. H. Gotoda, T. Ueda, Proc. Combust. Inst. 29, 1503 (2002).
http://dx.doi.org/10.1016/S1540-7489(02)80184-5
15.
15. H. Gotoda and T. Ueda, Combust. Flame 140, 287 (2005).
http://dx.doi.org/10.1016/j.combustflame.2004.11.013
16.
16. H. Gotoda, Y. Asano, K. H. Chuah, and G. Kushida, Int. J. Heat Mass Transfer 52, 5423 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.035
17.
17. H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81, 026211 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.026211
18.
18. P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.346
19.
19. C. Diks, Phys. Rev. E 53, R4263 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R4263
20.
20. D. Yu, M. Small, R. G. Harrison, and C. Diks, Phys. Rev. E 61, 3750 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.3750
21.
21. M. Small, D. Yu, and R. G. Harrison, Phys. Rev. Lett. 87, 18101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.188101
22.
22. A. A. Tsonis and J. B. Elsner, Nature (London) 358, 217 (1992).
http://dx.doi.org/10.1038/358217a0
23.
23. D. J. Wales, Nature (London) 350, 485 (1991).
http://dx.doi.org/10.1038/350485a0
24.
24. D. T. Kaplan and L. Glass, Physica D 64, 431 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90054-5
25.
25. R. Wayland, D. Bromley, D. Pickett, and A. Passamante, Phys. Rev. Lett. 70, 580 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.580
26.
26. T. Miyano, T. Moriya, H. Nagaike, N. Ikeuchi, and T. Matsumoto, J. Phys. D 41, 035209 (2008).
http://dx.doi.org/10.1088/0022-3727/41/3/035209
27.
27. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, Physica D 58, 77 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90102-S
28.
28. G. A. Gottwald and I. Melbourne, Proc. R. Soc. London, Ser. A 460, 603 (2004).
http://dx.doi.org/10.1098/rspa.2003.1183
29.
29. C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174102
30.
30. H. Gotoda, K. Michigami, K. Ikeda, and T. Miyano, Combust. Theory Modell. 14, 479 (2010).
http://dx.doi.org/10.1080/13647830.2010.493223
31.
31. T. Schreiber and A. Schmitz, Phys. Rev. Lett. 77, 635 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.635
32.
32. J. Theiler, Phys. Lett. A 196, 335 (1995).
http://dx.doi.org/10.1016/0375-9601(94)00856-K
33.
33. M. Small and K. Judd, Int. J. Bifurcation Chaos Appl. Sci. Eng. 8, 1231 (1998).
http://dx.doi.org/10.1142/S0218127498000966
34.
34. G. Sugihara and R. M. May, Nature (London) 344, 734 (1990).
http://dx.doi.org/10.1038/344734a0
35.
35. F. Takens, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981), Vol. 898.
36.
36. A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.1134
37.
37. G. A. Richards et al., Combust. Sci. Technol. 94, 57 (1993).
http://dx.doi.org/10.1080/00102209308935304
38.
38. M. A. Rhode, R. W. Rollins, A. J. Markworth, K. D. Edwards, K. Nguyen, C. S. Daw, and J. F. Thomas, J. Appl. Phys. 78, 2224 (1995).
http://dx.doi.org/10.1063/1.360138
39.
39. V. In, M. L. Spano, J. D. Neff, W. L. Ditto, C. S. Daw, K. D. Edwards, and K. Nguyen, Chaos 7, 605 (1997).
http://dx.doi.org/10.1063/1.166260
40.
40. M. Casdagli, Physica D 35, 335 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90074-2
41.
41. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).
42.
42. T. Ikeguchi and K. Aihara, Phys. Rev. E 55, 2530 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.2530
43.
43. G. Xiaofeng and C. H. Lai, Phys. Rev. E 60, 5463 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.5463
44.
44. Y. Xiao, Y. Huang, M. Li, R. Xu, and S. Xiao, Phys. Rev. E 68, 061913 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.061913
45.
45. D. Haraki, T. Suzuki, H. Hashiguchi, and T. Ikeguchi, Phys. Rev. E 75, 056212 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056212
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/1/10.1063/1.3563577
Loading
/content/aip/journal/chaos/21/1/10.1063/1.3563577
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/21/1/10.1063/1.3563577
2011-03-29
2016-09-25

Abstract

We experimentally investigate the dynamic behavior of the combustioninstability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustioninstability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustioninstability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/21/1/1.3563577.html;jsessionid=xwvrH8gRkH0dmUGQBdPmq7-W.x-aip-live-03?itemId=/content/aip/journal/chaos/21/1/10.1063/1.3563577&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/21/1/10.1063/1.3563577&pageURL=http://scitation.aip.org/content/aip/journal/chaos/21/1/10.1063/1.3563577'
Right1,Right2,Right3,