1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Transient dynamics around unstable periodic orbits in the generalized repressilator model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/21/2/10.1063/1.3574387
1.
1. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Theoretical and Mathematical Physics), 1st ed. (Springer, Heidelberg, Berlin, 2004).
2.
2. R. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955).
3.
3. V. A. R. Bulsara, A. Palacios, P. Longhini, A. Kho, and J. D. Neff, Phys. Rev. E 68, 045102 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.045102
4.
4. M. Golubitsky, I. Stewart, and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Applied Mathematical Sciences Vol. 69 (Springer, Berlin, 1988).
5.
5. S. Yanchuk and M. Wolfrum, Phys. Rev. E 77, 026212 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.026212
6.
6. A. S. Landsman and I. B. Schwartz, Phys. Rev. E 74, 036204 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.036204
7.
7. P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, and T. Kapitaniak, Chaos 20, 013111 (2010).
http://dx.doi.org/10.1063/1.3293176
8.
8. S. H. Strogatz, Nature (London) 410, 268 (2001).
http://dx.doi.org/10.1038/35065725
9.
9. A. R. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios, W.-J. Rappel, J. Acebron, S. Baglio, and B. Ando, Phys. Rev. E 70, 036103 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.036103
10.
10. M. B. Elowitz and S. Leibler, Nature (London) 403, 335 (2000).
http://dx.doi.org/10.1038/35002125
11.
11. J. Wei, Ind. Eng. Chem. Res. 38, 5019 (1999).
http://dx.doi.org/10.1021/ie990588m
12.
12. A. R. Bulsara, C. Seberino, L. Gammaitoni, M. F. Karlsson, B. Lundqvist, and J. W. C. Robinson, Phys. Rev. E 67, 016120 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.016120
13.
13. J. F. Lindner and A. R. Bulsara, Phys. Rev. E 74, 020105 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.020105
14.
14. M. Heinemann and S. Panke, Bioinformatics 22, 2790 (2006).
http://dx.doi.org/10.1093/bioinformatics/btl469
15.
15. A. S. Khalil and J. J. Collins, Nat. Rev. Genet. 11, 367 (2010).
http://dx.doi.org/10.1038/nrg2775
16.
16. K. I. Ramalingam, J. R. Tomshine, J. A. Maynard, and Y. N. Kaznessis, Biochem. Eng. J. 47, 38 (2009).
http://dx.doi.org/10.1016/j.bej.2009.06.014
17.
17. T. Gardner, C. R. Cantor, and J. J. Collins, Nature (London) 403, 339 (2000).
http://dx.doi.org/10.1038/35002131
18.
18. F. Fu, J. D. Sander, M. Maeder, S. Thibodeau-Beganny, J. K. Joung, D. Dobbs, L. Miller, and D. F. Voytas, Nucleic Acids Res. 37, D279 (2009).
http://dx.doi.org/10.1093/nar/gkn606
19.
19. See http://partsregistry.org MIT-Registry, accessed on 6 February 2010.
20.
20. A. Fraser and J. Tiwari, J. Theor. Biol. 47, 397 (1974).
http://dx.doi.org/10.1016/0022-5193(74)90206-9
21.
21. H. Smith, J. Math. Biol. 25, 169190 (1987).
http://dx.doi.org/10.1007/BF00276388
22.
22. S. Müller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, and P. Schuster, J. Math. Biol. 53, 905 (2006).
http://dx.doi.org/10.1007/s00285-006-0035-9
23.
23. R. Thomas and R. D’Ari, Biological Feedback (CRC, Boca Raton, FL, 1990).
24.
24. N. Strelkowa and M. Barahona, J. R. Soc. Interface 7, 1071 (2010).
http://dx.doi.org/10.1098/rsif.2009.0487
25.
25. M. Barahona, E. Trías, T. P. Orlando, A. E. Duwel, H. S. J. van der Zant, S. Watanabe, and S. H. Strogatz, Phys. Rev. B 55, R11989 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R11989
26.
26. A. Altland and B. Simons, Condensed Matter Field Theory, 1st ed. (Cambridge University Press, Cambridge, England, 2006).
27.
27. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003).
http://dx.doi.org/10.1145/779359.779362
28.
28. M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.054101
29.
29. G. H. Hardy and T. W. Körner, A Course of Pure Mathematics, 10th ed. (Cambridge University Press, New York, 2008), pp. 194.
30.
30. M. R. Jovanović and B. Bamieh, in Proceedings of the 2004 American Control Conference (IEEE Xplore Digital Library, Boston, MA, 2004), p. 2245.
31.
31. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University, Princeton, NJ, 2005).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/2/10.1063/1.3574387
Loading
/content/aip/journal/chaos/21/2/10.1063/1.3574387
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/21/2/10.1063/1.3574387
2011-04-13
2015-07-07

Abstract

We study the temporal dynamics of the generalized repressilator, a network of coupled repressing genes arranged in a directed ring topology, and give analytical conditions for the emergence of a finite sequence of unstable periodic orbits that lead to reachable long-lived oscillating transients. Such transients dominate the finite time horizon dynamics that is relevant in confined, noisy environments such as bacterial cells see our previous work [Strelkowa and Barahona, J. R. Soc. Interface , 1071 (2010)], and are therefore of interest for bioengineering and synthetic biology. We show that the family of unstable orbits possesses spatial symmetries and can also be understood in terms of traveling wave solutions of kink-like topological defects. The long-lived oscillatory transients correspond to the propagation of quasistable two-kink configurations that unravel over a long time. We also assess the similarities between the generalized repressilator model and other unidirectionally coupled electronic systems, such as magnetic flux gates, which have been implemented experimentally.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/21/2/1.3574387.html;jsessionid=eebnkie79d1es.x-aip-live-06?itemId=/content/aip/journal/chaos/21/2/10.1063/1.3574387&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transient dynamics around unstable periodic orbits in the generalized repressilator model
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/2/10.1063/1.3574387
10.1063/1.3574387
SEARCH_EXPAND_ITEM