Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Theoretical and Mathematical Physics), 1st ed. (Springer, Heidelberg, Berlin, 2004).
2. R. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955).
3. V. A. R. Bulsara, A. Palacios, P. Longhini, A. Kho, and J. D. Neff, Phys. Rev. E 68, 045102 (2003).
4. M. Golubitsky, I. Stewart, and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Applied Mathematical Sciences Vol. 69 (Springer, Berlin, 1988).
5. S. Yanchuk and M. Wolfrum, Phys. Rev. E 77, 026212 (2008).
6. A. S. Landsman and I. B. Schwartz, Phys. Rev. E 74, 036204 (2006).
7. P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, and T. Kapitaniak, Chaos 20, 013111 (2010).
8. S. H. Strogatz, Nature (London) 410, 268 (2001).
9. A. R. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios, W.-J. Rappel, J. Acebron, S. Baglio, and B. Ando, Phys. Rev. E 70, 036103 (2004).
10. M. B. Elowitz and S. Leibler, Nature (London) 403, 335 (2000).
11. J. Wei, Ind. Eng. Chem. Res. 38, 5019 (1999).
12. A. R. Bulsara, C. Seberino, L. Gammaitoni, M. F. Karlsson, B. Lundqvist, and J. W. C. Robinson, Phys. Rev. E 67, 016120 (2003).
13. J. F. Lindner and A. R. Bulsara, Phys. Rev. E 74, 020105 (2006).
14. M. Heinemann and S. Panke, Bioinformatics 22, 2790 (2006).
15. A. S. Khalil and J. J. Collins, Nat. Rev. Genet. 11, 367 (2010).
16. K. I. Ramalingam, J. R. Tomshine, J. A. Maynard, and Y. N. Kaznessis, Biochem. Eng. J. 47, 38 (2009).
17. T. Gardner, C. R. Cantor, and J. J. Collins, Nature (London) 403, 339 (2000).
18. F. Fu, J. D. Sander, M. Maeder, S. Thibodeau-Beganny, J. K. Joung, D. Dobbs, L. Miller, and D. F. Voytas, Nucleic Acids Res. 37, D279 (2009).
19. See MIT-Registry, accessed on 6 February 2010.
20. A. Fraser and J. Tiwari, J. Theor. Biol. 47, 397 (1974).
21. H. Smith, J. Math. Biol. 25, 169190 (1987).
22. S. Müller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, and P. Schuster, J. Math. Biol. 53, 905 (2006).
23. R. Thomas and R. D’Ari, Biological Feedback (CRC, Boca Raton, FL, 1990).
24. N. Strelkowa and M. Barahona, J. R. Soc. Interface 7, 1071 (2010).
25. M. Barahona, E. Trías, T. P. Orlando, A. E. Duwel, H. S. J. van der Zant, S. Watanabe, and S. H. Strogatz, Phys. Rev. B 55, R11989 (1997).
26. A. Altland and B. Simons, Condensed Matter Field Theory, 1st ed. (Cambridge University Press, Cambridge, England, 2006).
27. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003).
28. M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
29. G. H. Hardy and T. W. Körner, A Course of Pure Mathematics, 10th ed. (Cambridge University Press, New York, 2008), pp. 194.
30. M. R. Jovanović and B. Bamieh, in Proceedings of the 2004 American Control Conference (IEEE Xplore Digital Library, Boston, MA, 2004), p. 2245.
31. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University, Princeton, NJ, 2005).

Data & Media loading...


Article metrics loading...



We study the temporal dynamics of the generalized repressilator, a network of coupled repressing genes arranged in a directed ring topology, and give analytical conditions for the emergence of a finite sequence of unstable periodic orbits that lead to reachable long-lived oscillating transients. Such transients dominate the finite time horizon dynamics that is relevant in confined, noisy environments such as bacterial cells see our previous work [Strelkowa and Barahona, J. R. Soc. Interface , 1071 (2010)], and are therefore of interest for bioengineering and synthetic biology. We show that the family of unstable orbits possesses spatial symmetries and can also be understood in terms of traveling wave solutions of kink-like topological defects. The long-lived oscillatory transients correspond to the propagation of quasistable two-kink configurations that unravel over a long time. We also assess the similarities between the generalized repressilator model and other unidirectionally coupled electronic systems, such as magnetic flux gates, which have been implemented experimentally.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd