1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Introduction to Focus Issue: Synchronization and Cascading Processes in Complex Networks
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/21/2/10.1063/1.3605467
1.
1. D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
2.
2. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science 286, 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
3.
3. M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002).
http://dx.doi.org/10.1073/pnas.122653799
4.
4. J. A. Almendral, R. Criado, I. Leyva, J. M. Buldú, and I. Sendiña-Nadal, “Introduction to Focus Issue: Mesoscales in complex networks,” Chaos 21, 016101 (2011).
http://dx.doi.org/10.1063/1.3570920
5.
5. A. E. Motter and Z. Toroczkai, “Introduction: Optimization in networks,” Chaos 17, 026101 (2007).
http://dx.doi.org/10.1063/1.2751266
6.
6. S. Boccaletti, V. Latora, Y. Morenod, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,” Phys. Rep. 424, 175 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
7.
7. S. H. Strogatz, Sync: The Emerging Science of Spontaneous Order (Theia/Hyperion, New York, 2003).
8.
8. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sciences Series, Vol. 12, edited by B. Chirikov, P. Cvitanović, F. Moss, and H. Swinney (Cambridge University Press, Cambridge, UK, 2001).
9.
9. V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks (World Scientific, Singapore, 1994).
10.
10. S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems (World Scientific, Singapore, 2004).
11.
11. G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks (Springer, Berlin, 2007).
12.
12. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.09.002
13.
13. L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett. 80, 2109 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2109
14.
14. M. Barahona and L. M. Pecora, “Synchronization in small-world systems,” Phys. Rev. Lett. 89, 054101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.054101
15.
15. T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt, “Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?,” Phys. Rev. Lett. 91, 014101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.014101
16.
16. D.-S. Lee, “Synchronization transition in scale-free networks: Clusters of synchrony,” Phys. Rev. E 72, 026208 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.026208
17.
17. T. Ichinomiya, “Frequency synchronization in a random oscillator network,” Phys. Rev. E 70, 026116 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.026116
18.
18. J. G. Restrepo, E. Ott, and B. R. Hunt, “The emergence of coherence in complex networks of heterogeneous dynamical systems,” Phys. Rev. Lett. 96, 254103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.254103
19.
19. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984).
20.
20. J. A. K. Suykens and G. V. Osipov, “Introduction to Focus Issue: Synchronization in complex networks,” Chaos 18, 037101 (2008).
http://dx.doi.org/10.1063/1.2985139
21.
21. D. J. Watts, “A simple model of global cascades on random networks,” Proc. Natl. Acad. Sci. U.S.A. 99, 5766 (2002).
http://dx.doi.org/10.1073/pnas.082090499
22.
22. A. E. Motter, “Cascade control and defense in complex networks,” Phys. Rev. Lett. 93, 098701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.098701
23.
23. C. Liu, M. Shahidehpour, and J. Wang, “Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow,” Chaos 21, 025102 (2011).
24.
24. G. Barlev, T. M. Antonsen, and E. Ott, “The dynamics of network coupled phase oscillators: An ensemble approach,” Chaos 21, 025103 (2011).
25.
25. B. Kralemann, A. Pikovsky, and M. Rosenblum, “Reconstructing phase dynamics of oscillator networks,” Chaos 21, 025104 (2011).
26.
26. N. Carlson, D.-H. Kim, and A. E. Motter, “Sample-to-sample fluctuations in real-network ensembles,” Chaos 21, 025105 (2011).
27.
27. J. Um, P. Minnhagen, and B. J. Kim, “Synchronization in interdependent networks,” Chaos 21, 025106 (2011).
28.
28. L. Huang and Y.-C. Lai, “Cascading dynamics in complex quantum networks,” Chaos 21, 025107 (2011).
29.
29. J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, C. J. P. Vicente, and F. Ritort, “The Kuramoto model: A simple paradigm for synchronization phenomena,” Rev. Mod. Phys. 77, 137 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.137
30.
30. M. Li, X. Wang, Y. Fan, Z. Di, and C.-H. Lai, “Onset of synchronization in weighted complex networks: The effect of weight-degree correlation,” Chaos 21, 025108 (2011).
31.
31. J. Stout, M. Whiteway, E. Ott, M. Girvan, and T. M. Antonsen, “Local synchronization in complex networks of coupled oscillators,” Chaos 21, 025109 (2011).
32.
32. D. Kelly and G. A. Gottwald, “On the topology of synchrony optimized networks of a kuramoto-model with non-identical oscillators,” Chaos 21, 025110 (2011).
33.
33. T. Pérez, V. M. Eguíluz, and A. Arenas, “Phase clustering in complex networks of delay-coupled oscillators,” Chaos 21, 025111 (2011).
34.
34. E. Ott and T. M. Antonsen, “Long time evolution of phase oscillator systems,” Chaos 19, 023117 (2009).
http://dx.doi.org/10.1063/1.3136851
35.
35. E. Ott and T. M. Antonsen, “Low dimensional behavior of large systems of globally coupled oscillators,” Chaos 18, 037113 (2008).
http://dx.doi.org/10.1063/1.2930766
36.
36. E. Ott, B. R. Hunt, and T. M. Antonsen, “Comment on “long time evolution of phase oscillator systems” [Chaos 19, 023117 (2009)],” Chaos 21, 025112 (2011).
37.
37. T. Nishikawa and A. E. Motter, “Synchronization is optimal in non-diagonalizable networks,” Phys. Rev. E 73, 065106R (2006).
http://dx.doi.org/10.1103/PhysRevE.73.065106
38.
38. T. Nishikawa and A. E. Motter, “Maximum performance at minimum cost in network synchronization,” Physica D 224, 77 (2006).
http://dx.doi.org/10.1016/j.physd.2006.09.007
39.
39. J. Sun, E. M. Bollt, and T. Nishikawa, “Master stability functions for coupled nearly identical dynamical systems,” Europhys. Lett. 85, 60011 (2009).
http://dx.doi.org/10.1209/0295-5075/85/60011
40.
40. T. Nishikawa and A. E. Motter, “Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions,” Proc. Natl. Acad. Sci. U.S.A. 107, 10342 (2010).
http://dx.doi.org/10.1073/pnas.0912444107
41.
41. H. Kielblock, C. Kirst, and M. Timme, “Breakdown of order preservation in symmetric oscillator networks with pulse-coupling,” Chaos 21, 025113 (2011).
42.
42. I. Stewart, M. Golubitsky, and M. Pivato, “Symmetry groupoids and patterns of synchrony in coupled cell networks,” SIAM J. Appl. Dyn. Syst. 2, 609 (2003).
http://dx.doi.org/10.1137/S1111111103419896
43.
43. Y. Tang, Z. Wang, W. K. Wong, J. Kurths, and J. Fang, “Multiobjective synchronization of coupled chaotic systems,” Chaos 21, 025114 (2011).
44.
44. W. Zhang, C. Lim, S. Sreenivasan, J. Xie, B. K. Szymanski, and G. Korniss, “Social influencing and associated random walk models: Asymptotic consensus times on the complete graph,” Chaos 21, 025115 (2011).
45.
45. C. Qian, J. Cao, J. Lu, and J. Kurths, “Adaptive bridge control strategy for opinion evolution on social networks,” Chaos 21, 025116 (2011).
46.
46. D. B. Larremore, W. L. Shew, E. Ott, and J. G. Restrepo, “Effects of network topology, transmission delays, and refractoriness on the response of coupled excitable systems to a stochastic stimulus,” Chaos 21, 025117 (2011).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/2/10.1063/1.3605467
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color) Composition of selected figures from the articles in this issue, illustrating the network structure and/or collective dynamics: (a) power grid test case studied by Liu et al. (Ref. 23), (b) phase plane plot of collective motion studied by Barlev et al. (Ref. 24), (c) network motifs considered by Kralemann et al. (Ref. 25), (d) word network considered by Carlson et al. (Ref. 26), (e) interdependent networks studied by Um et al. (Ref. 27), (f) network with bridge structure considered by Qian et al. (Ref. 45), and (g) quantum network studied by Huang and Lai (Ref. 28).

Loading

Article metrics loading...

/content/aip/journal/chaos/21/2/10.1063/1.3605467
2011-06-28
2014-04-24

Abstract

The study of collective dynamics in complex networks has emerged as a next frontier in the science of networks. This Focus Issue presents the latest developments on this exciting front, focusing in particular on synchronous and cascading dynamics, which are ubiquitous forms of networkdynamics found in a wide range of physical, biological, social, and technological systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/21/2/1.3605467.html;jsessionid=1076jdjjblv73.x-aip-live-02?itemId=/content/aip/journal/chaos/21/2/10.1063/1.3605467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Introduction to Focus Issue: Synchronization and Cascading Processes in Complex Networks
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/2/10.1063/1.3605467
10.1063/1.3605467
SEARCH_EXPAND_ITEM