Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/21/4/10.1063/1.3645969
1.
1. T. I. Netoff, T. L. Carroll, L. M. Pecora, and S. J. Schiff, “Detecting coupling in presence of noise and nonlinearity,” in Handbook of Time Series Analysis, edited by B. Scheler, M. Winterhalder, and J. Timmer (Wiley-VCH, Berlin, 2006).
2.
2. G. A. Milliken, and D. E. Johnson, Analysis of Messy Data. Volume III: Analysis of Covariance (Chapman & Hall/CRC, 2002).
3.
3. W. H. Greene, Econometric Analysis (Prentice Hall, Englewood Cliffs, NJ, 2007).
4.
4. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, UK, 2004).
5.
5. J. C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, New York, 2004).
6.
6. C. Diks, Nonlinear Time Series Analysis (World Scientific, Singapore, 1999).
7.
7. E. J. Kostelich and T. Schreiber, Phys. Rev. E 48, 1752 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.1752
8.
8. M. Casdagli, J. R. Stat. Soc. Ser. B 54(2), 303 (1992), http://www.jstor.org/stable/2346130
9.
9. W. A. Barnett, A. R. Gallant, M. J. Hinich, J. A. Jungeilges, D. T. Kaplan, and M. J. Jensen, Journal of Econometrics 82(1), 157 (1997).
http://dx.doi.org/10.1016/S0304-4076(97)00081-X
10.
10. L. M. Pecora, L. Moniz, J. Nichols, and T. L. Carroll, Chaos 17, 013110 (2007).
http://dx.doi.org/10.1063/1.2430294
11.
11. L. M. Pecora, T. L. Carroll, and J. F. Heagy, Phys. Rev. E 52(4), 3420 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.3420
12.
12. M. E. Mera and M. Morán, Ergod. Theory Dyn. Syst. 20, 531 (2000).
http://dx.doi.org/10.1017/S0143385700000262
13.
13. E. J. Kostelich and J. A. Yorke, Phys. Rev. A 38(3), 1649 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.1649
14.
14. E. J. Kostelich and J. A. Yorke, Physica D 41, 183 (1990).
http://dx.doi.org/10.1016/0167-2789(90)90121-5
15.
15. S. M. Hammel, Phys. Lett. A 148, 421 (1990).
http://dx.doi.org/10.1016/0375-9601(90)90493-8
16.
16. J. D. Farmer and J. Sidorowich, Physica D 47, 373 (1991).
http://dx.doi.org/10.1016/0167-2789(91)90037-A
17.
17. T. Schreiber and P. Grassberger, Phys. Lett. A 160(5), 411 (1991).
http://dx.doi.org/10.1016/0375-9601(91)90237-3
18.
18. T. Schreiber, Phys. Rev. E 47(4), 2401 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.2401
19.
19. M. Davies, Physica D 79, 174 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90083-3
20.
20. D. M. Walker and A. I. Mees, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7(3), 769 (1997).
http://dx.doi.org/10.1142/S021812749700056X
21.
21. P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and T. Schreiber, Chaos 3(2), 127 (1993).
http://dx.doi.org/10.1063/1.165979
22.
22. A. Kern, W.-H. Steeb, and R. Stoop, Int. J. Mod. Phys. C 11(1), 125 (2000).
http://dx.doi.org/10.1142/S0129183100000110
23.
23. L. Matassini, H. Kantz, J. Holyst, and R. Hegger, Phys. Rev. E 65, 021102 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.021102
24.
24. A. Leontitsis, T. Bountis, and J. Pagge, Chaos 14(1), 106 (2004).
http://dx.doi.org/10.1063/1.1622354
25.
25. K. Urbanowicz, J. A. Holyst, T. Stemler, and H. Benner, Acta Phys. Pol. B 35(9), 2175 (2004).
26.
26. M. T. Johson and R. J. Povinelli, Physica D 201, 306 (2005).
http://dx.doi.org/10.1016/j.physd.2005.01.011
27.
27. X. Luo, J. Zhang, and M. Small, Phys. Rev. E 72, 046710 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.046710
28.
28. T. Sauer, Physica D, 58(1–4), 193 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90108-Y
29.
29. R. Cawley and G.-H. Hsu, Phys. Rev. A 46(6), 3057 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.3057
30.
30. R. Hegger and T. Schreiber, Phys. Lett. A 170, 305 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90259-O
31.
31. M. E. Mera and M. Morán, Chaos, 16, 013116 (2006).
http://dx.doi.org/10.1063/1.2151159
32.
32. M. E. Mera and M. Morán, Phys. Rev. E 80, 016207 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.016207
33.
33. R. Hegger, H. Kantz, and T. Schreiber, Chaos 9(2), 413 (1999).
http://dx.doi.org/10.1063/1.166424
34.
34. W. A. Fuller, Measurement Error Models, Wiley Series in Probability and Statistics, (John Wiley & Sons, New York, 2006).
35.
35. J. Bröcker and U. Parlitz, Chaos 11(2), 319 (2001).
http://dx.doi.org/10.1063/1.1357454
36.
36. L. Jaeger and H. Kantz, Chaos 6, 449 (1996).
http://dx.doi.org/10.1063/1.166196
37.
37. F. Takens, Dynamical Systems and Turbulence (Lecture Notes in Mathematics),” edited by D. A. Rang and L.-S. Young, (Springer, Berlin, 1981), Vol. 898, pp. 366381.
38.
38. T. Schreiber and D. T. Kaplan, Chaos 6(1), 87 (1996).
http://dx.doi.org/10.1063/1.166148
39.
39. P. Grassberger, T. Schreiber, and C. Schaffrath, Int. J. Bifurcation Chaos Appl. Sci. Eng. 1(3), 521 (1991).
http://dx.doi.org/10.1142/S0218127491000403
40.
40. W. Orzeszko, Chaos, Solitons Fractals 38, 1355 (2008).
http://dx.doi.org/10.1016/j.chaos.2007.06.059
41.
41. M. E. Mera and M. Morán, “Estimation of the covariance matrix of the measurement errors of dynamically coupled noisy time series,” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/21/4/10.1063/1.3645969
Loading
/content/aip/journal/chaos/21/4/10.1063/1.3645969
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/21/4/10.1063/1.3645969
2011-10-17
2016-12-11

Abstract

We say that several scalar time series are dynamically coupled if they record the values of measurements of the state variables of the same smooth dynamical system. We show that much of the information lost due to measurement noise in a target time series can be recovered with a noise reduction algorithm by crossing the time series with another time series with which it is dynamically coupled. The method is particularly useful for reduction of measurement noise in short length time series with high uncertainties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/21/4/1.3645969.html;jsessionid=PQBVt2ogdQRdKfrrzRTOkE88.x-aip-live-06?itemId=/content/aip/journal/chaos/21/4/10.1063/1.3645969&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/21/4/10.1063/1.3645969&pageURL=http://scitation.aip.org/content/aip/journal/chaos/21/4/10.1063/1.3645969'
Right1,Right2,Right3,