Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Komalapriya, M. Thiel, M. C. Ramano, N. Marwan, U. Schwarz, and J. Kurths, Phys. Rev. E 78, 066217 (2008).
2. J. C. Sprott, Chaos and Time-series Analysis (Oxford University Press, New York, 2003).
3. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. (Cambridge University Press, UK, 2003).
4. W. Hogan and M. Wagner, J. Am. Med. Inform Assoc. 5, 342 (1997).
5. J. van der Lei, Methods Inf. Med. 30, 79 (1991).
6. H. Sagreiya and R. B. Altman, J. Biomed. Inf. 43, 747 (2010).
7. J. M. Higgins and L. Mahadevan, Proc. Natl. Acad. Soc. U.S.A. 107, 20587 (2010).
8. E. Shudo, R. M. Ribeiro, and A. S. Perelson, J. Viral Hepat. 15, 357 (2008).
9. M. S. Turner, Phys. Today 62, 8 (2009).
10. J. D. Scargle, Astrophys. J. 263, 835 (1982).
11. S. Baisch and G. H. R. Bokelmann, Comput. Geosci. 25, 739 (1999).
12. M. Schulta and K. Stattegger, Comput. Geosci. 23, 929 (1997).
13. A. W. C. Liew, J. Xian, S. Wu, D. Smith, and H. Yan, BMC Bioinf. 8, 137 (2007).
14. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, (Springer, New York, 2004).
15. M. Loéve, Probability Theory I (Springer-Verlag, 1977).
16. A. G. Gray and A. W. Moore, “Very fast multivariate kernel density estimation using via computational geometry,” in Joint Stat. Meeting (August 4th, 2003).
17. Y.-I. Moon, B. Rajagopalan, and U. Lall, Phys. Rev. E 52, 2318 (1995).
18. R. J. May, G. C. Dandy, H. R. Maier, and T. M. K. G. Fernando, “Critical values of a kernel density-based mutual information estimator,” in International Joint Conference on Neural Networks (IEEE, Vancouver, BC, 2006).
19. D. J. Albers and G. Hripcsak, Estimation of time-delayed mutual information from sparsely sampled sources, e-print arXiv:1110.1615, 2011.
20. R. L. Wheeden and A. Zygmund, “Measure and integral,” in Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker, Inc., New York, 1977), Vol. 43.
21. G. P. Basharin, Theor. Probab. Appl. 4, 333 (1959).
22. M. S. Roulston, Physica D 125, 285 (1999).
23. J. Graxzyk and G. Światek, Ann. Math. 146, 1 (1997).
24. M. Jakobson, Commun. Math. Phys. 81, 39 (1981).
25. D. J. Albers and G. Hripcsak, Phys. Lett. A 374, 1159 (2010).
26. D. J. Albers and G. Hripcsak, Using population scale EHR data to understand and test human physiological dynamics, e-print arXiv:1110.3317, 2011.
27. It may seem odd to normalize indices, but this just keeps the domain of between zero and one.
28. To see the variation in the PDF estimates due to small sample sizes, observe the PDF estimates for different sets of uniform random numbers with small cardinality.
29. Note, the L1 difference is not technically a distance function or a metric because it does not satisfy the triangle inequality.

Data & Media loading...


Article metrics loading...



This paper addresses how to calculate and interpret the time-delayed mutual information (TDMI) for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here, aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can also be used to understand the degree of homo or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd