1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Partial synchronization in diffusively time-delay coupled oscillator networks
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/22/4/10.1063/1.4771665
1.
1. H. M. Smith, “Synchronous flashing of fireflies,” Science 82, 151152 (1935).
http://dx.doi.org/10.1126/science.82.2120.151
2.
2. J. Buck and E. Buck, “Synchronous fireflies,” Sci. Am. 234, 7485 (1976).
http://dx.doi.org/10.1038/scientificamerican0576-74
3.
3. S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,” Sci. Am. 269, 102109 (1993).
http://dx.doi.org/10.1038/scientificamerican1293-102
4.
4. C. S. Peskin, Mathematical Aspects of Heart Physiology (Courant Institute of Mathematical Sciences, New York University, 1975), pp. 268278.
5.
5. C. M. Gray, “Synchronous oscillations in neuronal systems: Mechanisms and functions,” J. Comput. Neurosci. 1, 1138 (1994).
http://dx.doi.org/10.1007/BF00962716
6.
6. C. A. Czeisler, E. D. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, and R. S. Knauer, “Human sleep: Its duration and organization depend on its circadian phase,” Science 210, 12641267 (1980).
http://dx.doi.org/10.1126/science.7434029
7.
7. A. T. Winfree, The geometry of biological time, Interdisciplinary Applied Mathematics, 2nd ed. (Springer, 2001).
8.
8. G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft, and M. Steinbuch, “String-stable CACC design and experimental validation, a frequency-domain approach,” IEEE Trans. Veh. Technol. 59, 42684279 (2010).
http://dx.doi.org/10.1109/TVT.2010.2076320
9.
9. K. Y. Pettersen, J. T. Gravdahl, and H. Nijmeijer, Group Coordination and Cooperative Control, Group Coordination and Cooperative Control (Springer-Verlag, Berlin, 2006), Vol. 336.
10.
10. H. Nijmeijer and A. Rodriguez-Angeles, Synchronization of mechanical systems (World Scientific, 2003).
11.
11. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821824 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.821
12.
12. K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz based chaotic circuits with applications to communications,” IEEE Trans. Circuit Syst., II 40, 626633 (1993).
http://dx.doi.org/10.1109/82.246163
13.
13. H. J. C. Huijberts, H. Nijmeijer, and R. M. A. Willems, “A control perspective on communication using chaotic systems,” in Proc. 37th IEEE Conf. Decision and Control (1998), Vol. 2, pp. 19571962.
14.
14. J. Hale, “Diffusive coupling, dissipation, and synchronization,” J. Dyn. Differ. Equ. 9, 152 (1997).
http://dx.doi.org/10.1007/BF02219051
15.
15. A. Pogromsky and H. Nijmeijer, “Cooperative oscillatory behavior of mutually coupled dynamical systems,” IEEE Trans. Circuit Syst., I 48, 152162 (2001).
http://dx.doi.org/10.1109/81.904879
16.
16. A. Sherman, J. Rinzel, and J. Keizer, “Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing,” Biophys. J. 54, 411425 (1988).
http://dx.doi.org/10.1016/S0006-3495(88)82975-8
17.
17. G. de Vries, A. Sherman, and H.-R. Zhu, “Diffusively coupled bursters: Effects of cell heterogeneity,” Bull. Math. Biol. 60, 11671199 (1998).
http://dx.doi.org/10.1006/bulm.1998.0057
18.
18. C. C. Chow and N. Kopell, “Dynamics of spiking neurons with electrical coupling,” Neural Comput. 12, 16431678 (2000).
http://dx.doi.org/10.1162/089976600300015295
19.
19. S. Coombes, “Neuronal networks with gap junctions: A study of piecewise linear planar neuron models,” SIAM J. Appl. Dyn. Syst. 7, 11011129 (2008).
http://dx.doi.org/10.1137/070707579
20.
20. N. Kopell and G. B. Ermentrout, “Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators,” in Handbook of Dynamical Systems, Towards Applications Vol. 2, edited by B. Fiedler, G. Iooss, and N. Kopell (Elsevier, 2002).
21.
21. T. J. Lewis and J. Rinzel, “Dynamics of spiking neurons connected by both inhibitory and electrical coupling,” J. Comput. Neurosci. 14, 283309 (2003).
http://dx.doi.org/10.1023/A:1023265027714
22.
22. J. L. P. Velazquez, “Mathematics and the gap junctions: In-phase synchronization of identical neurons,” Int. J. Neurosci. 113, 10951101 (2003).
http://dx.doi.org/10.1080/00207450390212069
23.
23. C. W. Wu and L. O. Chua, “Synchronization in an array of linearly coupled dynamical systems,” IEEE Trans. Circuit Syst., I 42, 430447 (1995).
http://dx.doi.org/10.1109/81.404047
24.
24. R. v.d. Steen and H. Nijmeijer, “Partial synchronization of diffusively coupled chua systems: An experimental case study,” in 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006).
25.
25. A. Rodriguez-Angeles and H. Nijmeijer, “Coordination of two robot manipulators based on position measurements only,” Int. J. Control 74, 13111323 (2001).
http://dx.doi.org/10.1080/00207170110065893
26.
26. D. J. Rijlaarsdam, A. Y. Pogromsky, and H. Nijmeijer, “Synchronization between coupled oscillators: An experimental approach,” in Dynamics and Control of Hybrid Mecahnical Systems, World Scientific series on Nonlinear Science, Series B, Vol. 14, edited by G. Leonov, H. Nijmeijer, A. Pogromsky, and A. Fradkov (World Scientific, 2010), pp. 153165.
27.
27. S.-J. Chung and J.-J. E. Slotine, “Coorperative robot control and concurrent synchronization of Lagrangian systems,” IEEE Trans. Robot. 25, 686700 (2009).
http://dx.doi.org/10.1109/TRO.2009.2014125
28.
28. M. Zanin, J. M. Buldú, and S. Boccaletti, “Networks of springs: A practical approach,” Int. J. Bifurcation Chaos 20, 937942 (2010).
http://dx.doi.org/10.1142/S021812741002623X
29.
29. R. Sipahi, S. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and stabilization of systems with time delay,” IEEE Control Syst. 31, 3865 (2011).
http://dx.doi.org/10.1109/MCS.2010.939135
30.
30. B. Liu, D. J. Hill, and J. Yao, “Global uniform synchronization with estimated error under transmission channel noise,” IEEE Trans. Circuit Syst., I. 56, 26892702 (2009).
http://dx.doi.org/10.1109/TCSI.2009.2016181
31.
31. M. Zhong and Q.-L. Han, “Fault tolerant master-slave synchronization for Lur'e systems using time-delay feedback control,” IEEE Trans. Circuit Syst., I. 56, 13911404 (2009).
http://dx.doi.org/10.1109/TCSI.2008.2006218
32.
32. T. Oguchi and H. Nijmeijer, “A synchronization condition for coupled nonlinear systems with time-delay: A frequency domain approach,” Int. J. Bifurcation Chaos 21, 25252538 (2011).
http://dx.doi.org/10.1142/S0218127411029902
33.
33. H. Gao, J. Lam, and G. Chen, “New criteria for synchronization stability of general complex dynamical networks with coupling delays,” Phys. Lett. A 360, 263273 (2006).
http://dx.doi.org/10.1016/j.physleta.2006.08.033
34.
34. J. Wu and L. Jiao, “Synchronization in complex delayed dynamical networks with nonsymmetric coupling,” Physica A 386, 513530 (2007).
http://dx.doi.org/10.1016/j.physa.2007.07.052
35.
35. T. Oguchi, H. Nijmeijer, and T. Yamamoto, “Synchronization in networks of chaotic systems with time-delay coupling,” Chaos 18, 037108103710814 (2008).
http://dx.doi.org/10.1063/1.2952450
36.
36. M. Chen, “Synchronization in complex dynamical networks with random sensor delay,” IEEE Trans. Circuit Syst., II 57, 4650 (2010).
http://dx.doi.org/10.1109/TCSII.2009.2037258
37.
37. N. Chopra and M. W. Spong, Output Synchronization of Nonlinear Systems with Relative Degree One, Lecture Notes in Control and Information Sciences, edited by V. D. Blondel, S. P. Boyd, and H. Kimura (Springer-Verlag, 2008), pp. 5164.
38.
38. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control 49, 15201533 (2004).
http://dx.doi.org/10.1109/TAC.2004.834113
39.
39. E. Steur and H. Nijmeijer, “Synchronization in networks of diffusively time-delay coupled (semi-)passive systems,” IEEE Trans. Circuit Syst., I 58, 13581371 (2011).
http://dx.doi.org/10.1109/TCSI.2010.2097670
40.
40. W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, “Synchronization in networks of chaotic units with time-delayed couplings,” Phys. Rev. E 79, 056207 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.056207
41.
41. V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll, “Synchronizing distant nodes: A universal classification of networks,” Phys. Rev. Lett. 105, 254101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.254101
42.
42. C.-U. Choe, T. Dahms, P. Hövel, and E. Schöll, “Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states,” Phys. Rev. E 81, 025205 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.025205
43.
43. S. Yanchuk, Y. Maistrenko, and E. Mosekilde, “Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators,” Math. Comput. Simul. 54, 491508 (2001).
http://dx.doi.org/10.1016/S0378-4754(00)00276-7
44.
44. A. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial synchronization: From symmetry towards stability,” Physica D 172, 6587 (2002).
http://dx.doi.org/10.1016/S0167-2789(02)00654-1
45.
45. A. Y. Pogromsky, “A partial synchronization theorem,” Chaos 18, 037107 (2008)
http://dx.doi.org/10.1063/1.2959145
45. A. Y. Pogromsky, [Erratum: Chaos 19, 049901 (2009)].
http://dx.doi.org/10.1063/1.3263166
46.
46. V. N. Belykh, I. V. Belykh, and M. Hasler, “Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems,” Phys. Rev. E 62, 63326345 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6332
47.
47. B. Dionne, M. Golubitsky, and I. Stewart, “Coupled cells with internal symmetry: I. Wreath products,” Nonlinearity 9, 559574 (1996).
http://dx.doi.org/10.1088/0951-7715/9/2/016
48.
48. B. Dionne, M. Golubitsky, and I. Stewart, “Coupled cells with internal symmetry: II. Direct products,” Nonlinearity 9, 575599 (1996).
http://dx.doi.org/10.1088/0951-7715/9/2/017
49.
49. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
50.
50.It can easily be shown that if the systems have an internal symmetry such that Jf(x) = f(Jx), and matrices J and C commute, then, under the conditions of lemmas 3 and 4, the set defines a linear invariant manifold for the coupled systems.
51.
51. T. Dahms, J. Lehnert, and E. Schöll, “Cluster and group synchronization in delay-coupled networks,” Phys. Rev. E. 86, 016202 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.016202
52.
52. L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett. 80, 21092112 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2109
53.
53. A. Y. Pogromsky, “Passivity based design of synchronizing systems,” Int. J. Bifurcation Chaos 8, 295319 (1998).
http://dx.doi.org/10.1142/S0218127498000188
54.
54. J. C. Willems, “Dissipative dynamical systems Part I: General theory,” Arch. Rational Mech. Anal. 45, 321351 (1972).
http://dx.doi.org/10.1007/BF00276493
55.
55. A. V. Pavlov, N. v. d. Wouw, and H. Nijmeijer, Uniform Output Regulation of Nonlinear Systems (Birkhäuser, Berlin, 2006).
56.
56. B. P. Demidovich, Lectures on Stability Theory (Nauka-Moscow, 1967) (in Russian).
57.
57. T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Mathematics in Science and Engineering Vol. 178 (Academic Press, Orlando, Florida, 1985).
58.
58. C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,” IEEE Trans. Autom. Control 36, 12281240 (1991).
http://dx.doi.org/10.1109/9.100932
59.
59. J. L. Hindmarsh and R. M. Rose, “A model for neuronal bursting using three coupled differential equations,” Proc. R. Soc. London, Ser. B 221, 87102 (1984).
http://dx.doi.org/10.1098/rspb.1984.0024
60.
60. E. Steur, I. Tyukin, and H. Nijmeijer, “Semi-passivity and synchronization of diffusively coupled neuronal oscillators,” Physica D 238, 21192128 (2009).
http://dx.doi.org/10.1016/j.physd.2009.08.007
61.
61. R. A. Horn and C. R. Johnson, Matrix Analysis, 6th ed. (Cambridge University Press, 1999).
62.
62. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
63.
63. T. Ishizaki, K. Kashima, J.-I. Imura, and K. Aihara, “Reaction-diffusion clustering of single-input dynamical networks,” in Proc. 50th IEEE Conf. Decision and Control (2011), pp. 78377842.
64.
64. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences Vol. 99 (Springer-Verlag, 1993).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/22/4/10.1063/1.4771665
Loading
/content/aip/journal/chaos/22/4/10.1063/1.4771665
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/22/4/10.1063/1.4771665
2012-12-26
2014-09-01

Abstract

We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks of oscillatory units that satisfy a semipassivity property and have convergent internal dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/22/4/1.4771665.html;jsessionid=2i95o15872vo5.x-aip-live-02?itemId=/content/aip/journal/chaos/22/4/10.1063/1.4771665&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Partial synchronization in diffusively time-delay coupled oscillator networks
http://aip.metastore.ingenta.com/content/aip/journal/chaos/22/4/10.1063/1.4771665
10.1063/1.4771665
SEARCH_EXPAND_ITEM