Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. M. Smith, “Synchronous flashing of fireflies,” Science 82, 151152 (1935).
2. J. Buck and E. Buck, “Synchronous fireflies,” Sci. Am. 234, 7485 (1976).
3. S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,” Sci. Am. 269, 102109 (1993).
4. C. S. Peskin, Mathematical Aspects of Heart Physiology (Courant Institute of Mathematical Sciences, New York University, 1975), pp. 268278.
5. C. M. Gray, “Synchronous oscillations in neuronal systems: Mechanisms and functions,” J. Comput. Neurosci. 1, 1138 (1994).
6. C. A. Czeisler, E. D. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, and R. S. Knauer, “Human sleep: Its duration and organization depend on its circadian phase,” Science 210, 12641267 (1980).
7. A. T. Winfree, The geometry of biological time, Interdisciplinary Applied Mathematics, 2nd ed. (Springer, 2001).
8. G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft, and M. Steinbuch, “String-stable CACC design and experimental validation, a frequency-domain approach,” IEEE Trans. Veh. Technol. 59, 42684279 (2010).
9. K. Y. Pettersen, J. T. Gravdahl, and H. Nijmeijer, Group Coordination and Cooperative Control, Group Coordination and Cooperative Control (Springer-Verlag, Berlin, 2006), Vol. 336.
10. H. Nijmeijer and A. Rodriguez-Angeles, Synchronization of mechanical systems (World Scientific, 2003).
11. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821824 (1990).
12. K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz based chaotic circuits with applications to communications,” IEEE Trans. Circuit Syst., II 40, 626633 (1993).
13. H. J. C. Huijberts, H. Nijmeijer, and R. M. A. Willems, “A control perspective on communication using chaotic systems,” in Proc. 37th IEEE Conf. Decision and Control (1998), Vol. 2, pp. 19571962.
14. J. Hale, “Diffusive coupling, dissipation, and synchronization,” J. Dyn. Differ. Equ. 9, 152 (1997).
15. A. Pogromsky and H. Nijmeijer, “Cooperative oscillatory behavior of mutually coupled dynamical systems,” IEEE Trans. Circuit Syst., I 48, 152162 (2001).
16. A. Sherman, J. Rinzel, and J. Keizer, “Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing,” Biophys. J. 54, 411425 (1988).
17. G. de Vries, A. Sherman, and H.-R. Zhu, “Diffusively coupled bursters: Effects of cell heterogeneity,” Bull. Math. Biol. 60, 11671199 (1998).
18. C. C. Chow and N. Kopell, “Dynamics of spiking neurons with electrical coupling,” Neural Comput. 12, 16431678 (2000).
19. S. Coombes, “Neuronal networks with gap junctions: A study of piecewise linear planar neuron models,” SIAM J. Appl. Dyn. Syst. 7, 11011129 (2008).
20. N. Kopell and G. B. Ermentrout, “Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators,” in Handbook of Dynamical Systems, Towards Applications Vol. 2, edited by B. Fiedler, G. Iooss, and N. Kopell (Elsevier, 2002).
21. T. J. Lewis and J. Rinzel, “Dynamics of spiking neurons connected by both inhibitory and electrical coupling,” J. Comput. Neurosci. 14, 283309 (2003).
22. J. L. P. Velazquez, “Mathematics and the gap junctions: In-phase synchronization of identical neurons,” Int. J. Neurosci. 113, 10951101 (2003).
23. C. W. Wu and L. O. Chua, “Synchronization in an array of linearly coupled dynamical systems,” IEEE Trans. Circuit Syst., I 42, 430447 (1995).
24. R. v.d. Steen and H. Nijmeijer, “Partial synchronization of diffusively coupled chua systems: An experimental case study,” in 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006).
25. A. Rodriguez-Angeles and H. Nijmeijer, “Coordination of two robot manipulators based on position measurements only,” Int. J. Control 74, 13111323 (2001).
26. D. J. Rijlaarsdam, A. Y. Pogromsky, and H. Nijmeijer, “Synchronization between coupled oscillators: An experimental approach,” in Dynamics and Control of Hybrid Mecahnical Systems, World Scientific series on Nonlinear Science, Series B, Vol. 14, edited by G. Leonov, H. Nijmeijer, A. Pogromsky, and A. Fradkov (World Scientific, 2010), pp. 153165.
27. S.-J. Chung and J.-J. E. Slotine, “Coorperative robot control and concurrent synchronization of Lagrangian systems,” IEEE Trans. Robot. 25, 686700 (2009).
28. M. Zanin, J. M. Buldú, and S. Boccaletti, “Networks of springs: A practical approach,” Int. J. Bifurcation Chaos 20, 937942 (2010).
29. R. Sipahi, S. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and stabilization of systems with time delay,” IEEE Control Syst. 31, 3865 (2011).
30. B. Liu, D. J. Hill, and J. Yao, “Global uniform synchronization with estimated error under transmission channel noise,” IEEE Trans. Circuit Syst., I. 56, 26892702 (2009).
31. M. Zhong and Q.-L. Han, “Fault tolerant master-slave synchronization for Lur'e systems using time-delay feedback control,” IEEE Trans. Circuit Syst., I. 56, 13911404 (2009).
32. T. Oguchi and H. Nijmeijer, “A synchronization condition for coupled nonlinear systems with time-delay: A frequency domain approach,” Int. J. Bifurcation Chaos 21, 25252538 (2011).
33. H. Gao, J. Lam, and G. Chen, “New criteria for synchronization stability of general complex dynamical networks with coupling delays,” Phys. Lett. A 360, 263273 (2006).
34. J. Wu and L. Jiao, “Synchronization in complex delayed dynamical networks with nonsymmetric coupling,” Physica A 386, 513530 (2007).
35. T. Oguchi, H. Nijmeijer, and T. Yamamoto, “Synchronization in networks of chaotic systems with time-delay coupling,” Chaos 18, 037108103710814 (2008).
36. M. Chen, “Synchronization in complex dynamical networks with random sensor delay,” IEEE Trans. Circuit Syst., II 57, 4650 (2010).
37. N. Chopra and M. W. Spong, Output Synchronization of Nonlinear Systems with Relative Degree One, Lecture Notes in Control and Information Sciences, edited by V. D. Blondel, S. P. Boyd, and H. Kimura (Springer-Verlag, 2008), pp. 5164.
38. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control 49, 15201533 (2004).
39. E. Steur and H. Nijmeijer, “Synchronization in networks of diffusively time-delay coupled (semi-)passive systems,” IEEE Trans. Circuit Syst., I 58, 13581371 (2011).
40. W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, “Synchronization in networks of chaotic units with time-delayed couplings,” Phys. Rev. E 79, 056207 (2009).
41. V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll, “Synchronizing distant nodes: A universal classification of networks,” Phys. Rev. Lett. 105, 254101 (2010).
42. C.-U. Choe, T. Dahms, P. Hövel, and E. Schöll, “Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states,” Phys. Rev. E 81, 025205 (2010).
43. S. Yanchuk, Y. Maistrenko, and E. Mosekilde, “Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators,” Math. Comput. Simul. 54, 491508 (2001).
44. A. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial synchronization: From symmetry towards stability,” Physica D 172, 6587 (2002).
45. A. Y. Pogromsky, “A partial synchronization theorem,” Chaos 18, 037107 (2008)
45. A. Y. Pogromsky, [Erratum: Chaos 19, 049901 (2009)].
46. V. N. Belykh, I. V. Belykh, and M. Hasler, “Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems,” Phys. Rev. E 62, 63326345 (2000).
47. B. Dionne, M. Golubitsky, and I. Stewart, “Coupled cells with internal symmetry: I. Wreath products,” Nonlinearity 9, 559574 (1996).
48. B. Dionne, M. Golubitsky, and I. Stewart, “Coupled cells with internal symmetry: II. Direct products,” Nonlinearity 9, 575599 (1996).
49. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130141 (1963).<0130:DNF>2.0.CO;2
50.It can easily be shown that if the systems have an internal symmetry such that Jf(x) = f(Jx), and matrices J and C commute, then, under the conditions of lemmas 3 and 4, the set defines a linear invariant manifold for the coupled systems.
51. T. Dahms, J. Lehnert, and E. Schöll, “Cluster and group synchronization in delay-coupled networks,” Phys. Rev. E. 86, 016202 (2012).
52. L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett. 80, 21092112 (1998).
53. A. Y. Pogromsky, “Passivity based design of synchronizing systems,” Int. J. Bifurcation Chaos 8, 295319 (1998).
54. J. C. Willems, “Dissipative dynamical systems Part I: General theory,” Arch. Rational Mech. Anal. 45, 321351 (1972).
55. A. V. Pavlov, N. v. d. Wouw, and H. Nijmeijer, Uniform Output Regulation of Nonlinear Systems (Birkhäuser, Berlin, 2006).
56. B. P. Demidovich, Lectures on Stability Theory (Nauka-Moscow, 1967) (in Russian).
57. T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Mathematics in Science and Engineering Vol. 178 (Academic Press, Orlando, Florida, 1985).
58. C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,” IEEE Trans. Autom. Control 36, 12281240 (1991).
59. J. L. Hindmarsh and R. M. Rose, “A model for neuronal bursting using three coupled differential equations,” Proc. R. Soc. London, Ser. B 221, 87102 (1984).
60. E. Steur, I. Tyukin, and H. Nijmeijer, “Semi-passivity and synchronization of diffusively coupled neuronal oscillators,” Physica D 238, 21192128 (2009).
61. R. A. Horn and C. R. Johnson, Matrix Analysis, 6th ed. (Cambridge University Press, 1999).
62. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
63. T. Ishizaki, K. Kashima, J.-I. Imura, and K. Aihara, “Reaction-diffusion clustering of single-input dynamical networks,” in Proc. 50th IEEE Conf. Decision and Control (2011), pp. 78377842.
64. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences Vol. 99 (Springer-Verlag, 1993).

Data & Media loading...


Article metrics loading...



We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks of oscillatory units that satisfy a semipassivity property and have convergent internal dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd