1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/1/10.1063/1.4790827
1.
1. A. Kundu, J. Math. Phys. 51, 022901 (2010).
http://dx.doi.org/10.1063/1.3276447
2.
2. J. F. Guo, S. K. Wang, K. Wu, Z. W. Yan, and W. Z. Zhao, J. Math. Phys. 50, 113502 (2009).
http://dx.doi.org/10.1063/1.3251299
3.
3. Zhaqilao and Sirendaoreji, J. Math. Phys. 51, 073501 (2010).
http://dx.doi.org/10.1063/1.3372626
4.
4. A. Karasu-Kalkanll, A. Karasu, A. Sakovich, S. Sakovich, and R. Turhan, J. Math. Phys. 49, 073516 (2008).
http://dx.doi.org/10.1063/1.2953474
5.
5. A. Kundu, J. Phys. A 41, 495201 (2008).
http://dx.doi.org/10.1088/1751-8113/41/49/495201
6.
6. A. Kundu, J. Math. Phys. 50, 102702 (2009).
http://dx.doi.org/10.1063/1.3204081
7.
7. R. G. Zhou, J. Math. Phys. 50, 123502 (2009).
http://dx.doi.org/10.1063/1.3257918
8.
8. X. and B. Tian, Europhys. Lett. 97, 10005 (2012).
http://dx.doi.org/10.1209/0295-5075/97/10005
9.
9. J. Lenells, Stud. Appl. Math. 123, 215 (2009).
http://dx.doi.org/10.1111/j.1467-9590.2009.00454.x
10.
10. A. S. Fokas, Physica D 87, 145 (1995).
http://dx.doi.org/10.1016/0167-2789(95)00133-O
11.
11. J. Lenells and A. S. Fokas, Nonlinearity 22, 11 (2009).
http://dx.doi.org/10.1088/0951-7715/22/1/002
12.
12. O. C. Wright, Nonlinearity 22, 2633 (2009).
http://dx.doi.org/10.1088/0951-7715/22/11/003
13.
13. J. Lenells, J. Nonlinear Sci. 20, 709 (2010).
http://dx.doi.org/10.1007/s00332-010-9070-1
14.
14. D. S. Wang, S. W. Song, B. Xiong, and W. M. Liu, Phys. Rev. A 84, 053607 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.053607
15.
15. X. , B. Tian, H. Q. Zhang, T. Xu, and H. Li, Chaos 20, 043125 (2010).
http://dx.doi.org/10.1063/1.3494154
16.
16. D. S. Wang, Nonlinear Analysis: TMA 73, 270 (2010).
http://dx.doi.org/10.1016/j.na.2010.03.021
17.
17. X. , H. W. Zhu, X. H. Meng, Z. C. Yang, and B. Tian, J. Math. Anal. Appl. 336, 1305 (2007);
http://dx.doi.org/10.1016/j.jmaa.2007.03.017
17. X. and M. Peng, Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications, Nonlinear Dyn. DOI: 10.1007/s11071-013-0795-x;
http://dx.doi.org/10.1007/s11071-013-0795-x
17. X. , H. W. Zhu, Z. Z. Yao, X. H. Meng, C. Zhang, C. Y. Zhang, and B. Tian, Ann. Phys. (N. Y.) 323, 1947 (2008);
http://dx.doi.org/10.1016/j.aop.2007.10.007
17. X. , B. Tian, T. Xu, K. J. Cai, and W. J. Liu, Ann. Phys. (N. Y.) 323, 2554 (2008);
http://dx.doi.org/10.1016/j.aop.2008.04.008
17. X. , J. Li, H. Q. Zhang, T. Xu, L. L. Li and B. Tian, J. Math. Phys. 51, 043511 (2010);
http://dx.doi.org/10.1063/1.3372723
17. X. and B. Tian, Phys. Rev. E 85, 026117 (2012);
http://dx.doi.org/10.1103/PhysRevE.85.026117
17. X. and M. Peng, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics, Commun. Nonlinear Sci. Numer. Simul. DOI: 10.1016/j.cnsns.2012.11.006.
http://dx.doi.org/10.1016/j.cnsns.2012.11.006
18.
18. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004).
19.
19. R. Hirota, J. Math. Phys. 14, 805 (1973).
http://dx.doi.org/10.1063/1.1666399
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4790827
Loading
/content/aip/journal/chaos/23/1/10.1063/1.4790827
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/1/10.1063/1.4790827
2013-02-19
2015-04-18

Abstract

In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/1/1.4790827.html;jsessionid=56l1qg1uj1khc.x-aip-live-03?itemId=/content/aip/journal/chaos/23/1/10.1063/1.4790827&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4790827
10.1063/1.4790827
SEARCH_EXPAND_ITEM