1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/23/1/10.1063/1.4790833
1.
1. K. H. Roscoe, A. N. Schofield, and C. P. Wroth, “ On the yielding of soils,” Géotechnique 8, 2253 (1958).
http://dx.doi.org/10.1680/geot.1958.8.1.22
2.
2. L. Rothenburg, and N. P. Kruyt, “ Critical state and evolution of coordination number in simulated granular materials,” Int. J. Solids Struct. 41, 57635774 (2004).
http://dx.doi.org/10.1016/j.ijsolstr.2004.06.001
3.
3. A. A. Peña, A. Lizcano, F. Alonso-Marroquin, and H. J. Herrmann, “ Biaxial test simulations using a packing of polygonal particles,” Int. J. Numer. Analyt. Meth. Geomech. 32, 143160 (2008).
http://dx.doi.org/10.1002/nag.618
4.
4. S. DJ. Mesarovic, J. M. Padbidri, and B. Muhunthan, “ Micromechanics of dilatancy and critical state in granular matter,” Géotechnique Lett. 2, 6166 (2012).
http://dx.doi.org/10.1680/geolett.12.00015
5.
5. Z.-Y. Yin and C. S. Chang, “ Non-uniqueness of critical state line in compression and extension conditions,” Int. J. Numer. Analyt. Meth. Geomech. 33, 13151338 (2009).
http://dx.doi.org/10.1002/nag.770
6.
6. X. Zhao, and T. M. Evans, “ Numerical analysis of critical state behaviors of granular soils under different loading conditions,” Granular Matter 13, 751764 (2011).
http://dx.doi.org/10.1007/s10035-011-0284-1
7.
7. M. A. Mooney, R. J. Finno, and M. G. Viggiani, “ A unique critical state for sand,?J. Geophys. Geoenviron. Eng. 124, 11001108 (1998).
http://dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1100)
8.
8. J. Desrues and G. Viggiani, “ Strain localization in sand: An overview of the experimental results obtained in Grenoble using stereophotogrammetry,” Int. J. Numer. Analyt. Meth. Geomech. 28, 279321 (2004).
http://dx.doi.org/10.1002/nag.338
9.
9. F. Alonso-Marroquin and I. Vardoulakis, “ Micromechanics of shear bands in granular media,” Powders Grains 1, 701704 (2005).
10.
10. F. Alonso-Marroquin, I. Vardoulakis, H. J. Herrmann, D. Weatherley, and P. Mora, “ Effect of rolling on dissipation in fault gouges,” Phys. Rev. E 74, 031306 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.031306
11.
11. C. Marone, “ Laboratory-derived friction laws and their application to seismic faulting,” Annu. Rev. Earth Planet. Sci. 26, 643696 (1998).
http://dx.doi.org/10.1146/annurev.earth.26.1.643
12.
12. J. Krim, P. Yu, and R. P. Behringer, “ Stick-slip and the transition to steady sliding in a 2D granular medium and a fixed particle lattice,” Pure Appl. Geophys. 168, 22592275 (2011).
http://dx.doi.org/10.1007/s00024-011-0364-5
13.
13. T. G. Sitharam and J. S. Vinod, “ Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations,” Granular Matter 11, 3342 (2009).
http://dx.doi.org/10.1007/s10035-008-0113-3
14.
14. T.-T. Ng, “ Discrete element method simulations of the critical state of a granular material,” Int. J. Geomech. 9, 209216 (2009).
http://dx.doi.org/10.1061/(ASCE)1532-3641(2009)9:5(209)
15.
15. A. Tordesillas, J. Shi, and J. F. Peters, “ Isostaticity in Cosserat continuum,” Granular Matter 14, 295301 (2012).
http://dx.doi.org/10.1007/s10035-012-0341-4
16.
16. S. Luding and E. Perdahcioglu, “ A local constitutive model with anisotropy for various homogeneous 2D biaxial deformation modes,” Chem.- Ing.- Tech. 83, 672688 (2011).
http://dx.doi.org/10.1002/cite.201000180
17.
17. V. Magnanimo and S. Luding, “ A local constitutive model with anisotropy for ratcheting under 2D axial-symmetric isobaric deformation,” Granular Matter 13, 225232 (2011).
http://dx.doi.org/10.1007/s10035-011-0266-3
18.
18. D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, “ Jamming by shear,” Nature 480, 355358 (2011).
http://dx.doi.org/10.1038/nature10667
19.
19. A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang, and R. P. Behringer, “ Transition dynamics and magic-number-like behavior of frictional granular clusters,” Phys. Rev. E 86, 011306 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.011306
20.
20. A. Tordesillas, J. Zhang, and R. P. Behringer, “ Buckling force chains in dense granular assemblies: physical and numerical experiments,” Geomech. Geoeng. 4, 316 (2009).
http://dx.doi.org/10.1080/17486020902767347
21.
21. F. Takens, “ Detecting strange attractors in turbulence,” Lect. Notes Math. 898, 366381 (1981).
http://dx.doi.org/10.1007/BFb0091924
22.
22. M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, Nonlinear Science Series A (World Scientific, Singapore, 2005), Vol. 52.
23.
23. J. Maquet, C. Letellier, and L. A. Aguirre, “ Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems,” J. Math. Biol. 55, 2139 (2007).
http://dx.doi.org/10.1007/s00285-007-0075-9
24.
24. M. Small and C. Carmeli, “ Re-examination of evidence for low-dimensional chaos in the Canadian lynx data,” in: International Symposium on Nonlinear Theory and its Applications, Research Society of Nonlinear Theory and its Applications, IEICE, 2009.
25.
25. A. Tordesillas, “ Force chain buckling, unjamming transitions and shear banding in dense granular assemblies,” Philos. Mag. 87, 49875016 (2007).
http://dx.doi.org/10.1080/14786430701594848
26.
26. A. Tordesillas, D. M. Walker, and Q. Lin, “ Force cycles and force chains,” Phys. Rev. E 81, 011302 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.011302
27.
27. A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer, and J. Shi, “ Structural stability and jamming of self-organized cluster conformations in dense granular materials,” J. Mech. Phys. Solids 59, 265296 (2011).
http://dx.doi.org/10.1016/j.jmps.2010.10.007
28.
28. M. Muthuswamy and A. Tordesillas, “ How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies?,” J. Stat. Mech.: Theory Exp., P09003 (2006).
29.
29. A. Tordesillas and M. Muthuswamy, “ On the modelling of confined buckling of force chains,” J. Mech. Phys. Solids 57, 706727 (2009).
http://dx.doi.org/10.1016/j.jmps.2009.01.005
30.
30. M. Oda and K. Iwashita, “ Study on couple stress and shear band development in granular media based on numerical simulation analyses,” Int. J. Eng. Sci. 38, 17131740 (2000).
http://dx.doi.org/10.1016/S0020-7225(99)00132-9
31.
31. Y. Guo and J. K. Morgan, “ Influence of normal stress and grain shape on granular friction: Results of discrete element simulations,” J. Geophys. Res. B, [Solid Earth Planets] 109, 116, doi:10.1029/2004JB003044 (2004).
http://dx.doi.org/10.1029/2004JB003044
32.
32. P. A. Cundall and O. D. L. Strack, “ A discrete numerical model for granular assemblies,” Géotechnique 29, 4765 (1979).
http://dx.doi.org/10.1680/geot.1979.29.1.47
33.
33. H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer-Verlag, New York, 1996).
34.
34. H. D. I. Abarbanel and M. B. Kennel, “ Local false nearest neighbours and dynamical dimensions from observed chaotic data,” Phys. Rev. E 47, 30573068 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.3057
35.
35. R. Brown, P. Bryant, and H. D. I. Abarbanel, “ Computing the Lyapunov spectrum of a dynamical system from an observed time series,” Phys. Rev. A 43, 27872806 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.2787
36.
36. K. Judd and A. Mees, “ Embedding as a modelling problem,” Physica D 120, 273286 (1998).
http://dx.doi.org/10.1016/S0167-2789(98)00089-X
37.
37. M. Small and C. Tse, “ Optimal embedding parameters: A modelling paradigm,” Physica D 194, 283296 (2004).
http://dx.doi.org/10.1016/j.physd.2004.03.006
38.
38. K. Judd and A. Mees, “ On selecting models for nonlinear time series,” Physica D 82, 426444 (1995).
http://dx.doi.org/10.1016/0167-2789(95)00050-E
39.
39. M. Small and K. Judd, “ Comparison of new nonlinear modelling techniques with applications to infant respiration,” Physica D 117, 283298 (1998).
http://dx.doi.org/10.1016/S0167-2789(97)00311-4
40.
40. M. Small and C. Tse, “ Minimum description length neural networks for time series prediction,” Phys. Rev. E 66, 066701 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.066701
41.
41. J. Rissanen, Stochastic Complexity in Statistical Inquiry (World Scientific, Singapore, 1989).
42.
42. K. Judd and M. Small, “ Towards long-term prediction,” Physica D 136, 3144 (2000).
http://dx.doi.org/10.1016/S0167-2789(99)00152-9
43.
43. M. Small, K. Judd, and A. Mees, “ Modeling continuous processes from data,” Phys. Rev. E 65, 046704 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.046704
44.
44. M. Small and K. Judd, “ Correlation dimension: A pivotal statistic for non-constrained realizations of composite hypotheses in surrogate data analysis,” Physica D 120, 386400 (1998).
http://dx.doi.org/10.1016/S0167-2789(98)00088-8
45.
45. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “ Testing for nonlinearity in time series: The method of surrogate data,” Physica D 58, 7794 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90102-S
46.
46. C. Diks, “ Estimating invariants of noisy attractors,” Phys. Rev. E 53, R4263R4266 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R4263
47.
47. D. Yu, M. Small, R. G. Harrison, and C. Diks, “ Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data,” Phys. Rev. E 61, 37503756 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.3750
48.
48. X.-K. Xu, J. Zhang, and M. Small, “ Superfamily phenomena and motifs of networks induced from time series,” Proc. Natl. Acad. Sci. U.S.A. 105, 1960119605 (2008).
http://dx.doi.org/10.1073/pnas.0806082105
49.
49. R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, and J. Kurths, “ Recurrence-based time series analysis by means of complex network methods,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, 10191046 (2011).
http://dx.doi.org/10.1142/S0218127411029021
50.
50. M. Newman, Networks: An Introduction (Oxford University Press, 2010).
51.
51. R. Xiang, J. Zhang, X.-K. Xu, and M. Small, “ Multiscale characterization of recurrence-based phase space networks constructed from time series,” Chaos 22, 013107 (2012).
http://dx.doi.org/10.1063/1.3673789
52.
52. M. Small, D. Yu, and R. G. Harrison, “ Observation of a period doubling bifurcation during onset of human ventricular fibrillation,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, 743754 (2003).
http://dx.doi.org/10.1142/S0218127403006911
53.
53. M. Oda, T. Takemura, and M. Takahashi, “ Microstructure in shear band observed by microfocus x-ray computed tomography,” Geotechnique 54(8 ), 539542 (2004).
http://dx.doi.org/10.1680/geot.2004.54.8.539
54.
54. A. L. Rechenmacher, “ Grain-scale processes governing shear band initiation and evolution in sands,” J. Mech. Phys. Solids 54, 2245 (2006).
http://dx.doi.org/10.1016/j.jmps.2005.08.009
55.
55. A. Tordesillas, G. Hunt, and J. Shi, “ A characteristic length scale in confined elastic buckling of a force chain,” Granular Matter 13, 215218 (2011).
http://dx.doi.org/10.1007/s10035-011-0252-9
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4790833
Loading
/content/aip/journal/chaos/23/1/10.1063/1.4790833
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/1/10.1063/1.4790833
2013-02-08
2015-05-22

Abstract

For a given observed time series, it is still a rather difficult problem to provide a useful and compelling description of the underlying dynamics. The approach we take here, and the general philosophy adopted elsewhere, is to reconstruct the (assumed) attractor from the observed time series. From this attractor, we then use a black-box modelling algorithm to estimate the underlying evolution operator. We assume that what cannot be modeled by this algorithm is best treated as a combination of dynamic and observational noise. As a final step, we apply an ensemble of techniques to quantify the dynamics described in each model and show that certain types of dynamics provide a better match to the original data. Using this approach, we not only build a model but also verify the performance of that model. The methodology is applied to simulations of a granular assembly under compression. In particular, we choose a single time series recording of bulk measurements of the stress ratio in a biaxial compression test of a densely packed granular assembly—observed during the large strain or so-called critical state regime in the presence of a fully developed shear band. We show that the observed behavior may best be modeled by structures capable of exhibiting (hyper-) chaotic dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/1/1.4790833.html;jsessionid=1rm2fhc6ggrga.x-aip-live-03?itemId=/content/aip/journal/chaos/23/1/10.1063/1.4790833&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Characterizing chaotic dynamics from simulations of large strain behavior of a granular material under biaxial compression
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4790833
10.1063/1.4790833
SEARCH_EXPAND_ITEM